Here we present a compact and precise [2]catenane rotary motor that functions with a single recognition site, capable of achieving a 360° directional rotation powered by chemical fuels. The motor is propelled by an acid-base fueled benzimidazolium pumping cassette and deemed the smallest (molecular weight ∼ 994 Da) catenane rotary motor to date. It can effectively undergo a 180° rotation by transitioning the [24]crown-6 ether (24C6) from the benzimidazolium site to the less favorable alkyl moiety through sequential deprotonation, slipping, and re-protonation operations, generating a meta stable co-conformer. Subsequently, a discharging phase, triggered by de-benzylation and re-benzylation, facilitates the other half-rotation of the motor, returning the 24C6 to its initial position and completing the full directional rotation of the [2]catenane rotary motor within 18 hours. The precision of the motor's operation enables further advances in artificial molecular machines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337080 | PMC |
http://dx.doi.org/10.1039/d4sc04292a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!