Identification of the neural circuits in the brain regulating animal behavior and physiology is critical for understanding brain functions and is one of the most challenging goals in neuroscience research. The fruitfly has often been used to identify the neural circuits involved in the regulation of specific behaviors because of the many neurogenetic tools available to express target genes in particular neurons. Neurons controlling sexual behavior, feeding behavior, and circadian rhythms have been identified, and the number of neurons responsible for controlling these phenomena is small. The search for a few neurons controlling a specific behavior is an important first step to clarify the overall picture of the neural circuits regulating that behavior. We previously found that the clock gene (), which is essential for circadian rhythms in , is also essential for long-term memory (LTM). We have also found that a very limited number of -expressing clock neurons in the adult brain are required for the consolidation and maintenance of LTM. In this review, we focus on LTM in , introduce the concept of LTM regulation by a few clock neurons that we have recently discovered, and discuss how a few clock neurons regulate LTM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338676 | PMC |
http://dx.doi.org/10.2142/biophysico.bppb-v21.s002 | DOI Listing |
Insect Sci
January 2025
Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
Many animals display physiological and behavioral activities limited to specific times of the day. Certain insects exhibit clear daily rhythms in their mating activities that are regulated by an internal biological clock. However, the specific genetic mechanisms underlying this regulation remain largely unexplored.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2025
Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2025
Department of Anatomy and Physiology, theUniversity of Melbourne, Australia.
The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.
View Article and Find Full Text PDFAging (Albany NY)
December 2024
CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.
View Article and Find Full Text PDFPeptides
January 2025
Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also known as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!