A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of natural zeolite adsorption in cooperation with photosynthesis for the post-treatment of microbial fuel cells. | LitMetric

Microbial fuel cells (MFCs) are a promising technology that directly converts organic matter (OM) in wastewater into electricity while simultaneously degrading contaminants. However, MFCs are insufficient for the removal of nitrogenous compounds. Therefore, the post-treatment of MFCs is essential. This study was the first to use natural zeolite adsorption integrated with photosynthesis (ZP) for post-treating MFCs. In this system, no external energy was required; instead, natural light was used to promote the growth of photosynthetic microorganisms, thereby enhancing contaminants removal through the photosynthesis process. To assess the effectiveness of the method, comparisons were conducted under two conditions: dark (no photosynthesis) and light (with photosynthesis). In darkness, extending hydraulic retention time (HRT) enhanced COD and BOD removal by 19.8% and 28.9%, respectively. When exposed to natural light, improvements were even more notable, with COD and BOD removal reaching 32% and 40%, respectively. In both conditions, the method effectively removed NH , achieving 60% efficiency in darkness and 84.5% in light. This study showed that the adsorption capacity of the zeolite reached saturation when the cumulative liquid volume per unit weight of the zeolite exceeded 0.2 L g. The key functional photosynthetic microbes were investigated using 16S rRNA and 18S rRNA. This revealed the presence of microorganisms such as , , , and , which likely play a role in enhancing the efficiency of photosynthesis in removing contaminants. The study findings indicated that the integration of MFCs-ZP represents an eco-friendly approach capable of resource recovery from wastewater while also meeting discharge standards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339683PMC
http://dx.doi.org/10.1039/d4ra04672bDOI Listing

Publication Analysis

Top Keywords

natural zeolite
8
zeolite adsorption
8
microbial fuel
8
fuel cells
8
natural light
8
cod bod
8
bod removal
8
photosynthesis
6
application natural
4
zeolite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!