The outstanding catalytic properties of single-atom catalysts (SACs) stem from the maximum atom utilization and unique quantum size effects, leading to ever-increasing research interest in SACs in recent years. Ru-based SACs, which have shown excellent catalytic activity and selectivity, have been brought to the frontier of the research field due to their lower cost compared with other noble catalysts. The synthetic approaches for preparing Ru SACs are rather diverse in the open literature, covering a wide range of applications. In this review paper, we attempt to disclose the synthetic approaches for Ru-based SACs developed in the most recent years, such as defect engineering, coordination design, ion exchange, the dipping method, and electrochemical deposition , and discuss their representative applications in both electrochemical and organic reaction fields, with typical application examples given of: Li-CO batteries, N reduction, water splitting and oxidation of benzyl alcohols. The mechanisms behind their enhanced catalytic performance are discussed and their structure-property relationships are revealed in this review. Finally, future prospects and remaining unsolved issues with Ru SACs are also discussed so that a roadmap for the further development of Ru SACs is established.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02289kDOI Listing

Publication Analysis

Top Keywords

enhanced catalytic
8
catalytic performance
8
ru-based sacs
8
synthetic approaches
8
sacs
7
performance single-atom
4
single-atom preparation
4
preparation approach
4
approach review
4
review ruthenium-based
4

Similar Publications

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Innovative spherical Fe-Mn layered double hydroxides (LDH) for the degradation of sulfisoxazole through activated periodate: Efficacy and mechanistic insights.

Environ Pollut

December 2024

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Advanced oxidation technology based on peroxides is widely regarded as an efficient method for treating emerging contaminants. However, the precise mechanism by which layered double hydroxides (LDHs) enhance oxidant activation requires further investigation. In this study, a spherical Fe-Mn LDH (S-FML) with improved crystallinity using a simple hydrothermal method.

View Article and Find Full Text PDF

Dual-domain superoxide dismutase: In silico prediction directed combinatorial mutation for enhanced robustness and catalytic efficiency.

Int J Biol Macromol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:

The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!