Superhydrophobic coatings have broad applications in a variety of industries. By using a low-surface-energy material and creating nanoscale roughness, a superhydrophobic surface can be produced. To overcome the health and environmental concerns of fluorine-based materials and the limitations of large-scale rough microstructure fabrication, a poly(dimethylsiloxane) (PDMS)-based hierarchical superhydrophobic fabric coating prepared by simple thermal treatment and electrostatic flocking technology was introduced in this study. High-temperature thermal treatment is employed to create PDMS nanoparticle-decorated carbon fibers, which are further vertically implanted onto the surface of cotton fabric via electrostatic flocking technology. The environmentally friendly PDMS nanoparticles were adopted as low-surface-energy materials, and the electrostatic flocking technology was utilized to generate a vertically aligned carbon fiber array coating, mimicking a lotus leaf-like superhydrophobic surface microstructure. Therefore, an ultrahigh water contact angle of 173.9 ± 2.8° and a low sliding angle of 1 ± 0.5° can be obtained by the fabric coating with a PDMS-to-carbon fiber ratio of 20:1. The prepared superhydrophobic fabric also exhibits an excellent self-cleaning property and great durability after 60 cycles of washing. Through commercially available thermal treatment and electrostatic flocking processes, this strategy for fabricating fluorine-free superhydrophobic fabric can be easily scaled up for commercial manufacturing and promotes the design of superhydrophobic coatings for other substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!