The disturbance of the inflammatory microenvironment is a frequent pathological trait of diabetic wounds, contributing to the emergence of numerous chronic illnesses. This is crucial in both the development and recovery of wounds caused by diabetes. This study aims to perform a bibliometric analysis of research on the inflammatory microenvironment within the domain of diabetic wounds (DW) over the past 10 years. The objective is to map out the current global research landscape, pinpoint the most significant areas of study and offer guidance for future research avenues. Our research involved querying the Web of Science Core Collection (WoSCC) database for all pertinent studies on the inflammatory microenvironment in diabetic wounds (DW). We utilized bibliometric tools such as CiteSpace, VOSviewer and R (version 4.3.1) to identify and highlight the most impactful studies in the field. The study encompassed a review of 1454 articles published from 2014 to 2023, highlighting China and the United States as pivotal nations in the research of the inflammatory microenvironment in diabetic wounds (DW). Within this sphere, the University of Michigan and Harvard University in the United States, along with Shanghai Jiaotong University in China, emerged as the most prolific institutions. WANG Y from China was identified as the most productive author, while KUNKEL SL from the United States received the most citations. The research primarily focuses on topics such as wound healing, repair processes, angiogenesis, oxidative stress and macrophage activity. Additionally, "macrophage" and "delivery" were pinpointed as the leading subjects with promising research potential in this area. Research on the inflammatory microenvironment of diabetic wounds is rapidly advancing through active international collaboration. The study of new mechanisms related to the inflammatory microenvironment and the development of novel materials for repair based on this microenvironment represent emerging fields of future research, particularly in terms of translational applications. This may offer guidance and novel perspectives for further research in the area of the diabetic wound inflammatory microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341833PMC
http://dx.doi.org/10.1111/iwj.14913DOI Listing

Publication Analysis

Top Keywords

inflammatory microenvironment
32
diabetic wounds
20
microenvironment diabetic
16
united states
12
microenvironment
9
inflammatory
8
diabetic wound
8
2014 2023
8
bibliometric analysis
8
offer guidance
8

Similar Publications

Therapeutic Potential of Carbon Dots Derived from Phytochemicals as Nanozymes Exhibiting Superoxide Dismutase Activity for Anemia.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process.

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

New insights into the role of complement system in colorectal cancer (Review).

Mol Med Rep

March 2025

Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.

Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression.

View Article and Find Full Text PDF

Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.

View Article and Find Full Text PDF

Three-Level Nanoparticle Rocket Strategy for Colorectal Cancer Therapeutics in Photothermal Therapy, Inflammation Modulation, and Cuproptosis Induction.

Adv Healthc Mater

January 2025

Department of Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Disturbances in intracellular copper (Cu) homeostasis can trigger cuproptosis, a new form of cell death, which, when combined with photothermal therapy (PTT), offers a promising solution to the persistent challenges in colorectal cancer (CRC) treatment. In this study, a "three-level nanoparticle rocket" strategy is developed by engineering CuO, a multifunctional Cu-based nanoenzyme that is photothermal and has electron transfer properties and antioxidant efficiency. CuO effectively remodels the inflammatory environment by scavenging reactive oxygen species, thereby overcoming the traditional limitations of PTT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!