A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cryo-Nanocatalyst Enhances Therapeutic Efficacy of Cryo-Immunotherapy through Necroptosis and Local Delivery of Programmed Death-Ligand 1 Inhibitors. | LitMetric

Combining cryoablation and immunotherapy presents a promising approach to revert immunosuppressive responses to solid tumors. However, challenges such as postablated residual tumors and insufficient immune activity contribute to recurrence after cryo-immunotherapy. Herein, we investigated metallic supra-structured cryo-nanocatalyst (MSCN), which features numerous ice nucleation sites and interspace loading of therapeutic agents. MSCN elevates the freezing point and enhances ice nucleation, facilitating effective ice formation during cryotreatment. MSCN-loaded tumor cells showed a 2-fold increase in cryo-cytotoxicity and undergo osmotic-related cell damage, primarily necroptosis rather than other regulated cell death mechanisms. In prostate cancer models, RNA sequencing reveals that MSCN-cryoablation promoted antitumor inflammatory pathways, including necroptosis, compared to cryoablation alone. Additionally, following programmed death-ligand 1 (PD-L1) upregulation postcryoablation, synergistic effects with PD-L1 blockade were confirmed. Given the interspace of MSCN for aPD-L1 loading, we compared the intratumoral delivery of PD-L1 blockade against systemic injection. Enhanced necrosis and necroptosis from MSCN-cryoablation and PD-L1 blockade effectively eradicated tumors and triggered antitumor and memory immune responses locally and systemically. Lastly, a spatial landscape of tumor-infiltrating immune cells was analyzed to gain insight into heterogeneous tumor responses, leading to the limitations of conventional focal ablation techniques. Our findings highlight the potential of advanced cryo-immunotherapy using cryo-nanocatalysis to promote ice formation and necroptosis, stimulating antitumor immunogenic responses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c05809DOI Listing

Publication Analysis

Top Keywords

pd-l1 blockade
12
programmed death-ligand
8
ice nucleation
8
ice formation
8
necroptosis
5
cryo-nanocatalyst enhances
4
enhances therapeutic
4
therapeutic efficacy
4
efficacy cryo-immunotherapy
4
cryo-immunotherapy necroptosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!