Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous studies have demonstrated that microRNAs (miRNAs) are critically important for the prediction, diagnosis, and characterization of diseases. However, identifying miRNA-disease associations through traditional biological experiments is both costly and time-consuming. To further explore these associations, we proposed a model based on hybrid high-order moments combined with element-level attention mechanisms (HHOMR). This model innovatively fused hybrid higher-order statistical information along with structural and community information. Specifically, we first constructed a heterogeneous graph based on existing associations between miRNAs and diseases. HHOMR employs a structural fusion layer to capture structure-level embeddings and leverages a hybrid high-order moments encoder layer to enhance features. Element-level attention mechanisms are then used to adaptively integrate the features of these hybrid moments. Finally, a multi-layer perceptron is utilized to calculate the association scores between miRNAs and diseases. Through five-fold cross-validation on HMDD v2.0, we achieved a mean AUC of 93.28%. Compared with four state-of-the-art models, HHOMR exhibited superior performance. Additionally, case studies on three diseases-esophageal neoplasms, lymphoma, and prostate neoplasms-were conducted. Among the top 50 miRNAs with high disease association scores, 46, 47, and 45 associated with these diseases were confirmed by the dbDEMC and miR2Disease databases, respectively. Our results demonstrate that HHOMR not only outperforms existing models but also shows significant potential in predicting miRNA-disease associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341279 | PMC |
http://dx.doi.org/10.1093/bib/bbae412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!