Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.20068 | DOI Listing |
Sensors (Basel)
January 2025
Acropolis Restoration Service, Hellenic Ministry of Culture, 10555 Athens, Greece.
This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Science, Nanchang University, Nanchang 330031, China.
Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!