Background: Feline Herpesvirus type-1 (FHV-1) is a worldwide spread pathogen responsible for viral rhinotracheitis and conjunctivitis in cats that, in the most severe cases, can lead to death. Despite the availability of a variety of antiviral medications to treat this illness, mainly characterized by virostatic drugs that alter DNA replication, their use is often debated. Phytotherapeutic treatments are a little-explored field for FHV-1 infections and reactivations. In this scenario, natural compounds could provide several advantages, such as reduced side effects, less resistance and low toxicity. The purpose of this study was to explore the potential inhibitory effects of the green tea extract (GTE), consisting of 50% of polyphenols, on FHV-1 infection and reactive oxygen species (ROS) production.
Results: Crandell-Reese feline kidney (CRFK) cells were treated with different doses of GTE (10-400 µg/mL) during the viral adsorption and throughout the following 24 h. The MTT and TCID assays were performed to determine the cytotoxicity and the EC of the extract, determining the amounts of GTE used for the subsequent investigations. The western blot assay showed a drastic reduction in the expression of viral glycoproteins (i.e., gB and gI) after GTE treatment. GTE induced not only a suppression in viral proliferation but also in the phosphorylation of Akt protein, generally involved in viral entry. Moreover, the increase in cell proliferation observed in infected cells upon GTE addition was supported by enhanced expression of Bcl-2 and Bcl-xL anti-apoptotic proteins. Finally, GTE antioxidant activity was evaluated by dichloro-dihydro-fluorescein diacetate (DCFH-DA) and total antioxidant capacity (TAC) assays. The ROS burst observed during FHV-1 infection was mitigated after GTE treatment, leading to a reduction in the oxidative imbalance.
Conclusions: Although further clinical trials are necessary, this study demonstrated that the GTE could potentially serve as natural inhibitor of FHV-1 proliferation, by reducing viral entry. Moreover, it is plausible that the extract could inhibit apoptosis by modulating the intrinsic pathway, thus affecting ROS production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340149 | PMC |
http://dx.doi.org/10.1186/s12917-024-04227-0 | DOI Listing |
J Feline Med Surg
January 2025
Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Objectives: To investigate the pathogenicity of feline herpesvirus-1 (FHV-1) to the cornea, FHV-1 strains isolated from feline eyes with dendritic ulcers were subjected to genomic analysis to determine whether FHV-1 vaccine strains are involved in the formation of dendritic ulcers.
Methods: All open reading frame (ORF) sequences of the three F2 strains (Virbac, Intervet and Merial) and the FHV-1 clinical isolates from cats registered in GenBank were compared to detect nucleotide variants unique to the F2 strains, with those nucleotides then being used for simple genotyping of the F2 strains. In all isolates from feline eyes with dendritic ulcers, the regions including nucleotide variants of the F2 strain were amplified with PCR and sequenced.
Vet Microbiol
February 2025
College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China. Electronic address:
Pseudorabies virus (PRV) is a significant pathogen that causes acute infectious diseases in pigs, resulting in considerable economic losses for the global pig industry. The lack of effective control measures and vaccines against the circulating variants of PRV highlights the pressing need for novel treatment strategies. In this study, a screening of a natural product library identified Berbamine as a promising compound that inhibits PRV replication, with a selectivity index of 17.
View Article and Find Full Text PDFVet Res
December 2024
Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Feline herpesvirus type 1 (FHV-1), a member of the Herpesviridae family, is one of the most important pathogens that causes upper respiratory tract disease in felines. Following infection, FHV-1 can spread retrogradely to the trigeminal ganglia, establishing a life-long latency. Although vaccines are available for routine feline vaccination, FHV-1 is still an agent that poses a serious threat to feline health.
View Article and Find Full Text PDFVet Sci
October 2024
Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
FHV-1 is a highly contagious pathogen that significantly threatens feline health and contributes to rising pet healthcare costs. The mechanisms underlying FHV-1 and host interactions remain poorly understood. For the first time, we conducted a systematic analysis of transcriptomic changes in CRFK cells following FHV-1 infection using RNA-seq.
View Article and Find Full Text PDFVirology
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!