Background: Early detection of colorectal cancer (CRC) significantly enhances patient outcomes. Conventional CRC screening tools, like endoscopy and stool-based tests, have constraints due to their invasiveness or suboptimal patient adherence. Recently, liquid biopsy employing plasma cell-free DNA (cfDNA) has emerged as a potential noninvasive screening technique for various malignancies.

Methods: In this research, we harnessed the Mutation Capsule Plus (MCP) technology to profile an array of genomic characteristics from cfDNA procured from a single blood draw. This profiling encompassed DNA methylation, the 5' end motif, copy number variation (CNV), and genetic mutations. An integrated model built upon selected multiomics biomarkers was trained using a cohort of 93 CRC patients and 96 healthy controls.

Results: This model was subsequently validated in another cohort comprising 89 CRC patients and 95 healthy controls. Remarkably, the model achieved an area under the curve (AUC) of 0.981 (95% confidence interval (CI), 0.965-0.998) in the validation set, boasting a sensitivity of 92.1% (95% CI, 84.5%-96.8%) and a specificity of 94.7% (95% CI, 88.1%-98.3%). These numbers surpassed the performance of any single genomic feature. Importantly, the sensitivities reached 80% for stage I, 89.2% for stage II, and were 100% for stages III and IV.

Conclusion: Our findings underscore the clinical potential of our multiomics liquid biopsy test, indicating its prospective role as a noninvasive method for early-stage CRC detection. This multiomics approach holds promise for further refinement and broader clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340186PMC
http://dx.doi.org/10.1186/s12943-024-01959-3DOI Listing

Publication Analysis

Top Keywords

early detection
8
detection colorectal
8
colorectal cancer
8
liquid biopsy
8
crc patients
8
patients healthy
8
crc
5
integration multiomics
4
multiomics features
4
features blood-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!