Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study focused on the impact of infection with the tobacco mosaic virus (TMV). Specifically, changes in phytochemicals and gene activity related to pathogenesis-related and phenylpropanoid pathway genes in tomato plants (Solanum lycopersicum L.) during a period of 2-14 days post-inoculation (dpi). According to TEM investigation and coat protein sequence analysis, the purified TMV Egyptian AM isolate (PP133743) has a rod-shaped structure with a diameter of around 110 nm. The RT-qPCR analysis revealed that PR-1 showed an initial increase after TMV infection, as seen in the time-course analysis. In contrast, PR-2 was consistently elevated throughout the infection, suggesting a stronger reaction to the virus and suppressing PAL expression at 6 to 14 dpi. The expression levels of HQT and CHS transcripts exhibited alternating patterns of up-regulation and down-regulation at different time intervals. The HPLC and GC-MS analysis of control- and TMV-infected tomato extracts revealed that different phenolic, flavonoid, and fatty acid compounds were increased (such as naringenin, rutin, flavone, ferulic acid, and pyrogallol) or significantly decreased (such as salicylic acid and chlorogenic acid) after TMV infection. The ability of TMV to inhibit most polyphenolic compounds could potentially accelerate the viral life cycle. Consequently, focusing on enhancing the levels of such suppressed compounds may be critical for developing plant viral infection management strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341961 | PMC |
http://dx.doi.org/10.1038/s41598-024-69492-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!