A critical problem that Emergency Departments (EDs) must address is overcrowding, as it causes extended waiting times and increased patient dissatisfaction, both of which are immediately linked to a greater number of patients who leave the ED early, without any evaluation by a healthcare provider (Leave Without Being Seen, LWBS). This has an impact on the hospital in terms of missing income from lost opportunities to offer treatment and, in general, of negative outcomes from the ED process. Consequently, healthcare managers must be able to forecast and control patients who leave the ED without being evaluated in advance. This study is a retrospective analysis of patients registered at the ED of the "San Giovanni di Dio e Ruggi d'Aragona" University Hospital of Salerno (Italy) during the years 2014-2021. The goal was firstly to analyze factors that lead to patients abandoning the ED without being examined, taking into account the features related to patient characteristics such as age, gender, arrival mode, triage color, day of week of arrival, time of arrival, waiting time for take-over and year. These factors were used as process measures to perform a correlation analysis with the LWBS status. Then, Machine Learning (ML) techniques are exploited to develop and compare several LWBS prediction algorithms, with the purpose of providing a useful support model for the administration and management of EDs in the healthcare institutions. During the examined period, 688,870 patients were registered and 39188 (5.68%) left without being seen. Of the total LWBS patients, 59.6% were male and 40.4% were female. Moreover, from the statistical analysis emerged that the parameter that most influence the abandonment rate is the waiting time for take-over. The final ML classification model achieved an Area Under the Curve (AUC) of 0.97, indicating high performance in estimating LWBS for the years considered in this study. Various patient and ED process characteristics are related to patients who LWBS. The possibility of predicting LWBS rates in advance could be a valid tool quickly identifying and addressing "bottlenecks" in the hospital organization, thereby improving efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341825 | PMC |
http://dx.doi.org/10.1038/s41598-024-70545-w | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Otolaryngology, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou, Zhejiang, China.
T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Machine Learning Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, FL.
Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
INSERM, IMRBU955, Univ Paris Est Créteil, Créteil, France.
Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).
Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!