Terpenoids, known for their structural and functional diversity, are highly valued, especially in food, cosmetics, and cleaning products. Microbial biosynthesis has emerged as a sustainable and environmentally friendly approach for the production of terpenoids. However, the natural enzymes involved in the synthesis of terpenoids have problems such as low activity, poor specificity, and insufficient stability, which limit the biosynthesis efficiency. Enzyme engineering plays a pivotal role in the microbial synthesis of terpenoids. By modifying the structures and functions of key enzymes, researchers have significantly improved the catalytic activity, specificity, and stability of enzymes related to terpenoid synthesis, providing strong support for the sustainable production of terpenoids. This article reviews the strategies for the modification of key enzymes in microbial synthesis of terpenoids, including improving enzyme activity and stability, changing specificity, and promoting mass transfer through multi-enzyme collaboration. Additionally, this article looks forward to the challenges and development directions of enzyme engineering in the microbial synthesis of terpenoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.240165 | DOI Listing |
J Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy.
The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.
View Article and Find Full Text PDFPeerJ
January 2025
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .
Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .
Scand J Immunol
January 2025
LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!