Objective: A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative ultrasound-midband fit [QUS-MF], and B-mode) for the detection of prostate cancer.

Methods: A DNN was trained using co-registered ARFI, SWEI, MF, and B-mode data obtained in men with biopsy-confirmed prostate cancer prior to radical prostatectomy (15 subjects, comprising 980,620 voxels). Data were obtained using a commercial scanner that was modified to allow user control of the acoustic beam sequences and provide access to the raw image data. For each subject, the index lesion and a non-cancerous region were manually segmented using visual confirmation based on whole-mount histopathology data.

Results: In a prostate phantom, the DNN increased lesion contrast-to-noise ratio (CNR) compared to a previous approach that used a linear support vector machine (SVM). In the in vivo test datasets (n = 15), the DNN-based mpUS volumes clearly portrayed histopathology-confirmed prostate cancer and significantly improved CNR compared to the linear SVM (2.79 ± 0.88 vs. 1.98 ± 0.73, paired-sample t-test p < 0.001). In a sub-analysis in which the input modalities to the DNN were selectively omitted, the CNR decreased with fewer inputs; both stiffness- and echogenicity-based modalities were important contributors to the multiparametric model.

Conclusion: The findings from this study indicate that a DNN can be optimized to generate mpUS prostate volumes with high CNR from ARFI, SWEI, MF, and B-mode and that this approach outperforms a linear SVM approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416897PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.07.012DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
multiparametric ultrasound
8
deep neural
8
dnn trained
8
arfi swei
8
swei b-mode
8
cnr compared
8
linear svm
8
prostate
6
dnn
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!