Sophisticated structure design and multi-step manufacturing processes for balancing spectra-selective optical property and the necessary applicable performance for human thermal-wet regulation, is the major limitation in wide application of radiative cooling materials. Herein, we proposed a biomass confinement strategy to a gradient porous Janus cellulose film for enhanced optical performance without compromising thermal-wet comfortable. The bacterial cellulose confined grow in the micro-nano pores between PP nonwoven fabric and SiO achieving the cross-scale gradient porous Janus structure. This structure enables the inorganic scatterers even distribution forming multi-reflecting optical mechanism, thereby, gradient porous Janus film demonstrates a reflectivity of 93.1 % and emissivity of 88.1 %, attains a sub-ambient cooling temperature difference of 2.8 °C(daytime) and 8.5 °C(night). Film enables bare skin to avoid overheating by 7.7 °C compared to cotton fabric. It reaches a 17.2 °C building cooling temperature under 1 sun radiance. Moreover, biomass confined micro-nano gradient porous structure integrating with Janus wet gradient guarantees the driven force for directional water transportation, which satisfies the thermal-wet comfortable demands for human cooling application without any further complicated process. Overall, bacterial cellulose based biomass confining strategy provides a prospective method to obtain outdoor-service performance in cooling materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122482DOI Listing

Publication Analysis

Top Keywords

gradient porous
20
porous janus
16
bacterial cellulose
12
biomass confined
8
cellulose film
8
radiative cooling
8
cooling materials
8
thermal-wet comfortable
8
cooling temperature
8
gradient
6

Similar Publications

Model of drop infiltration into a thin amphiphilic porous medium.

J Colloid Interface Sci

January 2025

UMR1114 EMMAH INRAE-AU, 228, Route de L'Aérodrome, Avignon, F84000, France. Electronic address:

Hypothesis: Water drop infiltration into a thin amphiphilic porous medium is influenced by wettability. Due to the reorganization of amphiphilic matter in contact with water, polar interaction changes the wettability in the bulk porous medium and at the liquid/porous substrate interface. To model out of equilibrium water transfer, we propose a thermodynamics approach derived from Onsager's principle.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

On Diffusiophoresis of a Soft Particle with a Hydrophobic Inner Core: A Semianalytical Study.

Langmuir

January 2025

Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2461 Yamazaki Noda, Chiba 278-8510, Japan.

The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core's hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness.

View Article and Find Full Text PDF

Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds.

View Article and Find Full Text PDF

Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers.

Polymers (Basel)

December 2024

Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!