Traditional pressure-sensitive microcapsules used in textiles face challenges of insufficient environmental friendliness in the production process and uncontrollable fragrance release. To address this issue, this study utilized quaternary ammonium chitosan and silica as wall materials to develop a magnetic aromatic microcapsule. The microstructure of the microcapsules was controlled by magnetic field induction, and its evolution pattern was investigated. After magnetic field induction, the microcapsules exhibited a trend of evolving from spherical to asymmetrical shapes, accompanied by significant changes in mechanical properties. Asymmetrical microcapsules showed higher adhesion and lower stiffness. When applied to cotton textiles, the cotton textiles treated with asymmetrical microcapsules released 63.40 % of lavender essential oil after 200 friction cycles, representing an 11.3 % improvement in release efficiency compared to regular microcapsules, indicating better mechanical stimulus responsiveness. Additionally, in antibacterial tests, aromatic cotton exhibited a 96.52 % inhibition ratio against Escherichia coli. In summary, this study explores methods to adjust the mechanical properties of microcapsules and the relationship between mechanical properties and microstructure, providing a new approach for functional textiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122453DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
mechanical properties
12
quaternary ammonium
8
ammonium chitosan
8
microcapsules
8
field induction
8
asymmetrical microcapsules
8
cotton textiles
8
microstructure induction
4
induction quaternary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!