The study focus is the valorization of banana agriculture by products by the extraction and derivatization of cellulose and its incorporation in formulations to produce superabsorbent materials endowed with high water absorption performances. The extracted cellulose (BP) was subjected to a controlled oxidation by sodium periodate to convert it to cellulose dialdehyde (DAC) with controlled aldehyde content. The cellulosic materials were incorporated into a suspension containing acrylic acid (AA) and itaconic acid (IA) to produce composite hybrid hydrogels (SA-BP/SA-DAC) by radical chain polymerization in water, using N,N-methylene-bis-acrylamide (MBA) as a cross-linking agent and potassium persulfate (KPS) as an initiator. The prepared materials were characterized using techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and rheological analysis. Additionally, the absorption and re-swelling capacities of the superabsorbent composites (SAPs) were assessed through kinetic studies in water and NaCl solution. Notably, dialdehyde cellulose (DAC), due to its low crystallinity index, hydrophilicity (attributed to aldehyde and hemiacetal functions), and high polarity, holds promise for enhancing the swelling and water retention capacity of the hydrogel. A water absorption capacity as high as 1240±60 g.g-1 was obtained for SA-DAC with a DAC content of 5 %wt. Additionally, the reusability of the SAPs was evidenced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122504 | DOI Listing |
Gels
December 2024
Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.
Carboxymethyl cellulose sodium salt (CMC)-based superabsorbents are promising materials for the development of agricultural matrices aimed at water management and slow-release fertilizer production. However, an increase in the CMC content tends to reduce their water-absorbing capacity. This study aims to develop a cost-effective method for producing eco-friendly superabsorbents with enhanced water-absorbing capacity by incorporating a porogen and employing lyophilization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea. Electronic address:
Although hemostatic powders are commonly used in clinical and emergency settings, they frequently show poor absorption, raise cytotoxicity issues, and are not effective for fatal non-compressible bleeding. The purpose of this research is to create a self-gelling hemostatic powder based on chitosan, bentonite, and sodium polyacrylate (CBS) to improve the hemostatic effect. When liquid comes into contact with CBS powders, they can fuse and form a stable hydrogel in less than 30s.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, 11365-9161 Tehran, Iran.
The ability of a surface to completely absorb a liquid droplet is an important property that can be controlled by geometrical structure and chemical composition of the surface. Here, using Laplace pressure and Gibbs free energy (GFE) considerations, a capped truncated microcone array geometry is proposed to obtain a near zero degree for contact angle (θ) of a water droplet. Our results showed that two essential conditions must be met to achieve a superabsorbent surface.
View Article and Find Full Text PDFACS Omega
November 2024
Graduate Program in Chemical Engineering, Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
Cotton gauze bandages have traditionally played a pivotal role in wound care and surgical procedures, absorbing fluids, including blood, and protecting against infection. However, their limited liquid absorption capacity raises concern about potential post-surgery complications if inadvertently retained. In response, resorbable and biocompatible polymers have emerged as a promising alternative to enhance surgical outcomes and mitigate inflammation.
View Article and Find Full Text PDFHeliyon
October 2024
College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China.
Injectable hydrogels, which are polymeric materials that are characterized by their ability to be injected in a liquid form into cavities and subsequently undergo in situ solidification, have garnered significant attention. These materials are extensively used in a range of biomedical applications. This study synthesized several injectable composite hydrogels through the mild Schiff base reaction while imposing different concentrations of quaternary ammonium chitosan and oxidized pullulan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!