Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bisphenol A (BPA), a prominent endocrine-disrupting compound, has garnered considerable attention due to its urgent need for rapid removal from water. Herein, we first used a novel reactive phosphine oxide containing tertiary amines as crosslinker to prepare water-insoluble crosslinked β-cyclodextrin (β-CD) adsorbent via radical-mediated thiol-ene polymerization. Owing to the synergistic hydrogen-bond (H-bond) interactions of functional groups (tertiary amine and PO groups) toward BPA, the resulted adsorbents showed fast adsorption kinetics to BPA with an adsorption equilibrium time of 5 min. After six adsorption-desorption cycles, the removal efficiency of BPA was 92.5 %, indicating its excellent reusability. Due to the presence of the CS bonds, the β-CD -derived bio-adsorbents offered binding sites for Cu ions, resulting in a maximum adsorption capacity of 113.89 mg g.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!