Unraveling the unique structural motifs of glucuronoxylan from hybrid aspen wood.

Carbohydr Polym

Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden; Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, 100 44 Stockholm, Sweden. Electronic address:

Published: November 2024

Xylan is a fundamental structural polysaccharide in plant secondary cell walls and a valuable resource for biorefinery applications. Deciphering the molecular motifs of xylans that mediate their interaction with cellulose and lignin is fundamental to understand the structural integrity of plant cell walls and to design lignocellulosic materials. In the present study, we investigated the pattern of acetylation and glucuronidation substitution in hardwood glucuronoxylan (GX) extracted from aspen wood using subcritical water and alkaline conditions. Enzymatic digestions of GX with β-xylanases from glycosyl hydrolase (GH) families GH10, GH11 and GH30 generated xylo-oligosaccharides with controlled structures amenable for mass spectrometric glycan sequencing. We identified the occurrence of intramolecular motifs in aspen GX with block repeats of even glucuronidation (every 2 xylose units) and consecutive glucuronidation, which are unique features for hardwood xylans. The acetylation pattern of aspen GX shows major domains with evenly-spaced decorations, together with minor stretches of highly acetylated domains. These heterogenous patterns of GX can be correlated with its extractability and with its potential interaction with lignin and cellulose. Our study provides new insights into the molecular structure of xylan in hardwood species, which has fundamental implications for overcoming lignocellulose recalcitrance during biochemical conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122434DOI Listing

Publication Analysis

Top Keywords

aspen wood
8
cell walls
8
unraveling unique
4
unique structural
4
structural motifs
4
motifs glucuronoxylan
4
glucuronoxylan hybrid
4
aspen
4
hybrid aspen
4
wood xylan
4

Similar Publications

Aspen Wood Characteristics Following Thermal Modification in Closed Process Under Pressure in Nitrogen.

Materials (Basel)

December 2024

Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, 3/7 Paula Valdena Street, LV-1048 Riga, Latvia.

Using a pilot-scale chamber with an interior capacity of 340 L, European aspen () wood boards were thermally modified (TM) under pressure in nitrogen at a maximum temperature of 160-170 °C, for 60-180 min, and with an initial nitrogen pressure of 4-5 bar. After the TM process, aspen wood was characterised by dimensional changes, mass loss (ML), equilibrium moisture content (EMC), antiswelling efficiency (ASE), cell wall total water capacity (CWTWC), modulus of rupture (MOR), modulus of elasticity (MOE), and Brinell hardness (BH). This work offers fresh insights into the characteristics of aspen wood following a closed TM process in pressurised nitrogen.

View Article and Find Full Text PDF

Exploring the relationship between lignin structure and antioxidant property using lignin model compounds.

Int J Biol Macromol

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Lignin has a natural polyphenol structure that is expected to replace chemically synthesized antioxidants as a native antioxidant with biodegradable and convenient source characteristics. However, the improvement of the antioxidant property of lignin and its application as an antioxidant are still somewhat limited due to the lack of understanding of the relationship between specific lignin structures and antioxidant property. Therefore, the study of the relationship between lignin structure and antioxidant property is crucial to realize the high-quality application of lignin.

View Article and Find Full Text PDF

Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L.

View Article and Find Full Text PDF

Comparative assessment of acute neurotoxicity of real-world ultra-fine black carbon emitted from residential solid fuel combustion.

Sci Total Environ

December 2024

State Key Joint Laboratory for Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

Article Synopsis
  • Incomplete combustion of residential solid fuels is a major source of black carbon (BC), which can be harmful to brain health due to its ability to cross the blood-brain barrier.
  • The study found that straw-derived BC had the highest neurotoxic effects on human neuroblastoma cells, while coal-derived BC showed minimal toxicity even at high concentrations.
  • Various biological mechanisms were identified, with biomass BC impacting mitochondrial function and metabolic processes, while coal BC primarily triggered inflammatory responses through specific signaling pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!