High-throughput sequencing has identified numerous intronic variants in the SCN1A gene in epilepsy patients. Abnormal mRNA splicing caused by these variants can lead to significant phenotypic differences, but the mechanisms of epileptogenicity and phenotypic differences remain unknown. Two variants, c.4853-1 G>C and c.4853-25 T>A, were identified in intron 25 of SCN1A, which were associated with severe Dravet syndrome (DS) and mild focal epilepsy with febrile seizures plus (FEFS+), respectively. The impact of these variants on protein expression, electrophysiological properties of sodium channels and their correlation with epilepsy severity was investigated through plasmid construction and transfection based on the aberrant spliced mRNA. We found that the expression of truncated mutant proteins was significantly reduced on the cell membrane, and retained in the cytoplasmic endoplasmic reticulum. The mutants caused a decrease in current density, voltage sensitivity, and an increased vulnerability of channel, leading to a partial impairment of sodium channel function. Notably, the expression of DS-related mutant protein on the cell membrane was higher compared to that of FEFS+-related mutant, whereas the sodium channel function impairment caused by DS-related mutant was comparatively milder than that caused by FEFS+-related mutant. Our study suggests that differences in protein expression levels and altered electrophysiological properties of sodium channels play important roles in the manifestation of diverse epileptic phenotypes. The presence of intronic splice site variants may result in severe phenotypes due to the dominant-negative effects, whereas non-canonical splice site variants leading to haploinsufficiency could potentially cause milder phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148876 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!