Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Environmental pathogen surveillance is a promising disease surveillance modality that has been widely adopted for SARS-CoV-2 monitoring. The highly variable nature of environmental pathogen data is a challenge for integrating these data into public health response. One source of this variability is heterogeneous infection both within an individual over the course of infection as well as between individuals in their pathogen shedding over time. We present a mechanistic modeling and estimation framework for connecting environmental pathogen data to the number of infected individuals. Infected individuals are modeled as shedding pathogen into the environment via a Poisson process whose rate parameter λ varies over the course of their infection. These shedding curves λ are themselves random, allowing for variation between individuals. We show that this results in a Poisson process for environmental pathogen levels with rate parameter a function of the number of infected individuals, total shedding over the course of infection, and pathogen removal from the environment. Theoretical results include determination of identifiable parameters for the model from environmental pathogen data and simple, explicit formulas for the likelihood for particular choices of individual shedding curves. We give a two step Bayesian inference framework, where the first step corresponds to calibration from data where the number of infected individuals is known, followed by an estimation step from environmental surveillance data when the number of infected individuals is unknown. We apply this modeling and estimation framework to synthetic data, as well as to an empirical case study of SARS-CoV-2 in environmental dust collected from isolation rooms housing university students. Both the synthetic data and empirical case study indicate high inter-individual variation in shedding, leading to wide credible intervals for the number of infected individuals. We examine how uncertainty in estimates of the number of infected individuals from environmental pathogen levels scales with the true number of infected individuals and model misspecification. While credible intervals for the number of infected individuals are wide, our results suggest that distinguishing between no infection and small-to-moderate levels of infection (≈10 infected individuals) may be possible, and that it is broadly possible to differentiate between moderate (≈40) and high (≈200) numbers of infected individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2024.109257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!