A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxia-inducible lipid droplet-associated protein (HILPDA) and cystathionine β-synthase (CBS) co-contribute to protecting intestinal epithelial cells from Staphylococcus aureus via regulating lipid droplets formation. | LitMetric

Hypoxia-inducible lipid droplet-associated protein (HILPDA) and cystathionine β-synthase (CBS) co-contribute to protecting intestinal epithelial cells from Staphylococcus aureus via regulating lipid droplets formation.

Biochim Biophys Acta Mol Cell Biol Lipids

MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Published: December 2024

Despite Staphylococcus aureus (S. aureus) being a highly studied zoontic bacterium, its enteropathogenicity remains elusive. Herein, our findings demonstrated that S. aureus infection led to the accumulation of lipid droplets (LDs) in intestinal epithelial cells, accompanied by marked elevation inflammatory response that ultimately decreases intracellular bacterial load. The aforestated phenomenon may be partly attributed to the up-regulation of hypoxia-inducible lipid droplet-associated protein (HILPDA) and the concomitant down-regulation of cystathionine β-synthase (CBS) protein. Moreover, S. aureus infection up-regulated the expression of HILPDA, thereby promoting LDs accumulation, and down-regulated that of CBS, consequently inhibiting microsomal triglyceride transfer protein (MTTP) expression. This process may suppress the transport of LDs to the extracellular environment, further contributing to the formation of intracellular LDs. In summary, the results of this study provide significant insights into the intricate mechanisms through which the host organism combats pathogens and maintains the balance of sulfur and lipid metabolism. These findings not only enhance our understanding of the host's defense mechanisms but also offer promising avenues for the development of novel strategies to combat intestinal infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2024.159558DOI Listing

Publication Analysis

Top Keywords

hypoxia-inducible lipid
8
lipid droplet-associated
8
droplet-associated protein
8
protein hilpda
8
cystathionine β-synthase
8
β-synthase cbs
8
intestinal epithelial
8
epithelial cells
8
staphylococcus aureus
8
lipid droplets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!