Binding characteristics and structural dynamics of two general odorant-binding proteins with plant volatiles in the olfactory recognition of Glyphodes pyloalis.

Insect Biochem Mol Biol

Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China. Electronic address:

Published: October 2024

Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is the most destructive pest, causing severe damage to mulberry production in China's sericulture industry. The insecticide application in mulberry orchards poses a significant risk of poisoning to Bombyx mori. Shifting from insecticides to odor attractants is a beneficial alternative, but not much data is available on the olfactory system of G. pyloalis. We identified 114 chemosensory genes from the antennal transcriptome database of G. pyloalis, with 18 odorant-binding protein (OBP) and 17 chemosensory protein (CSP) genes significantly expressed in the antennae. Ligand-binding assays for two antennae-biased expressed general odorant-binding proteins (GOBPs) showed high binding affinities of GOBP1 to hexadecanal, β-ionone, and 2-ethylhexyl acrylate, while GOBP2 exhibited binding to 4-tert-octylphenol, benzyl benzoate, β-ionone, and farnesol. Computational simulations indicated that van der Waal forces predominantly contributed to the binding free energy in the binding processes of complexes. Among them, Phe12 of GOBP1 and Phe19 of GOBP2 were demonstrated to play crucial roles in their bindings to plant volatiles using site-directed mutagenesis experiments. Moreover, hexadecanal and β-ionone attracted G. pyloalis male moths in the behavioral assays, while none of the candidate plant volatiles significantly affected female moths. Our findings provide a comprehensive understanding of the molecular mechanisms underlying olfactory recognition in G. pyloalis, setting the groundwork for novel mulberry pests control strategies based on insect olfaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2024.104177DOI Listing

Publication Analysis

Top Keywords

plant volatiles
12
general odorant-binding
8
odorant-binding proteins
8
olfactory recognition
8
glyphodes pyloalis
8
hexadecanal β-ionone
8
pyloalis
6
binding
5
binding characteristics
4
characteristics structural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!