Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The demand for UV-protective and biodegradable packaging materials has been increasing with greater awareness about environmental sustainability and human safety. In this work, the effect of incorporating riceberry phenolic extract (RPE) as well as combined RPE and green synthesized biogenic nano‑silver (RPE-NS, into Tara gum/PVA (TP)-based matrix was evaluated on the physical, mechanical, functional, biocompatible and biodegradable attributes of the resultant composite films. Integration of RPE (2 wt%) and RPE-NS (0.8 wt%) resulted in nanocomposite (TP/RPE-NS) film with improved physical properties relative to the plain TP and TP/RPE films. The TP/RPE-NS film displayed a compact structure and homogenous distribution of the nano‑silver. Increased molecular interactions, crystallinity and thickness was also observed for the nanocomposite film. Compared to plain TP film, TP/RPE-NS film exhibited improved water vapor barrier properties and surface hydrophobicity due to the extract and nanoparticles. The tensile strength and elongation-at-break of TP/RPE-NS were markedly higher (41.76 MPa and 37.40 %) compared to that of plain TP film (36.07 MPa and 20.80 %). Whereas TP/RPE film provided good UV protection (UPF value of 31.85) compared to the minimal protection by TP film (UPF value of 2.72), combination of RPE/RPE-NS ensured that TP/RPE-NS availed an excellent UV-barrier performance (UPF value of 61.09). Furthermore, TP/RPE-NS film exhibited significant antioxidant activity relative to TP film. Besides, all TP-based films were found to be compatible with rat erythrocytes and biodegradable. Taken together, these findings indicate that TP/RPE-NS holds good potential for the development of UV-protective and biodegradable packaging material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!