Construction and anti-pancreatic cancer activity of selenium nanoparticles stabilized by Prunella vulgaris polysaccharide.

Int J Biol Macromol

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guizhou Medical University, Guiyang 550004, China. Electronic address:

Published: October 2024

Selenium nanoparticles (SeNPs), as a potential cancer therapeutic agent, have attracted extensive attention due to their high anticancer activity and low toxicity. Polysaccharides could be the modifiers and stabilizers to improve the stability and dispersibility of SeNPs in aqueous solution. This study aimed to investigate the physicochemical characterization, stability, and anti-pancreatic cancer cell activities of SeNPs stabilized by a heteroxylan PVP3-1 extracted from the clusters of Prunella vulgaris Linn. Our results showed that PVP3-1 with Mw of 154 kDa was composed of →4)-β-D-Xylp(1→, →2, 4)-β-D-Xylp(1→, t-α-L-Araf(1→ and 4-MeO-α-D-GlcpA(1→. Red, zero-valent, and uniform spherical SeNPs with an average diameter of about 60 nm and high stability in aqueous solution were constructed successfully by polysaccharide PVP3-1. Anti-pancreatic cancer cell activity assays showed that PVP3-1-SeNPs could inhibit the proliferation and migration of pancreatic cancer cells in vitro. Furthermore, PVP3-1-SeNPs induced apoptosis and autophagy of pancreatic cancer cells through inhibiting mTOR signaling pathway. In conclusion, these results indicated that PVP3-1-SeNPs could be potential anti-tumor nanoparticles for treating pancreatic cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134924DOI Listing

Publication Analysis

Top Keywords

anti-pancreatic cancer
12
pancreatic cancer
12
selenium nanoparticles
8
prunella vulgaris
8
aqueous solution
8
cancer cell
8
cancer cells
8
cancer
7
construction anti-pancreatic
4
cancer activity
4

Similar Publications

Pancreatic cancer is among the most challenging tumors to treat, and due to its immune tolerance characteristics, existing immunotherapy methods are not effective in alleviating the disease. Oncolytic virus therapy, a potential new strategy for treating pancreatic cancer, also faces the limitation of being ineffective when used alone. Elucidating the key host endogenous circular RNAs (circRNAs) involved in M1 virus-mediated killing of pancreatic ductal adenocarcinoma (PDAC) cells may help overcome this limitation.

View Article and Find Full Text PDF

Dissecting the anti-pancreatic cancer mechanism of gold nanorods mediate photothermal therapy through quantitative proteomics analysis.

Biochem Biophys Res Commun

February 2025

Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, China. Electronic address:

Gold nanorods (GNRs) mediated photothermal therapy (PTT) represents a promising technique for cancer treatment, utilizing GNRs in conjunction with near-infrared (NIR) laser irradiation to convert energy into heat. In the present study, we employed PTT to induce apoptosis in pancreatic cancer cells and investigated its underlying mechanisms through quantitative proteomics analysis. Initially, we established that temperatures ranging from 47 to 51°C significantly enhance cellular apoptosis without inducing necrosis.

View Article and Find Full Text PDF

Pancreatic cancer is characterized by occult onset, low early diagnosis rate, rapid progress, and poor prognosis. Due to the low response rate and low programmed cell death ligand 1 (PD-L1) expression in pancreatic cancer, the therapeutic application of PL-L1 inhibitors in pancreatic cancer is greatly limited. In vitro studies showed that the expression of PD-L1 increased in pancreatic cancer cells stimulated by fluorouracil (5-FU).

View Article and Find Full Text PDF

Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor.

View Article and Find Full Text PDF

Objectives: Natural flora historically has played a substantial part in drug development since they serve as active ingredients in medications and templates for the synthesis of novel pharmaceuticals. is a conventionally utilised therapeutic flora in Indian pharmacopoeia. Therefore, the current study is intended to separate, structurally describe and analyse the anti-pancreatic cancer potential of isolated natural bio-constituents from (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!