Growing use of synthetic materials has increased the number of stressors that can degrade freshwater ecosystems. Many of these stressors are relatively new and poorly understood, such as microplastics which are now ubiquitous in freshwater systems. The effects of microplastics on freshwater biota must be investigated further in order to better manage and mitigate their impacts. Our experiment provides the first empirical evaluation of stream invertebrate community dynamics in response to microplastics of different concentrations and sizes, in combination with fine sediment, a pervasive known stressor in running waters. In a 7-week streamside experiment using 64 flow-through circular mesocosms, we investigated the effects of exposure to three simulated microplastic influxes (polyethylene microspheres at four levels between 0 and 28,800 items/event) and the addition of fine sediment (to simulate a polluted stream environment). Invertebrate drift was monitored for 48 h immediately after each microplastic influx, and benthic invertebrate communities were sampled after 28 days of microplastic and sediment manipulations. Microplastic concentration, size and fine sediment all had significant factor main effects on several invertebrate drift response metrics, whereas few microplastic main effects were seen in the benthic community. However, interactive stressor effects were common in different combinations between sediment, microplastic size and concentration, suggesting multiple-stressor relationships between microplastics and fine sediment. Microplastic ingestion was witnessed in four of 12 taxa analysed: Hydrobiosidae, Deleatidium spp., Potamopyrgus antipodarum and Archichauliodes diversus. Our findings provide insights into how microplastics affect drift and benthic community dynamics of stream invertebrates in a field-realistic experimental setting and highlight areas requiring further study. These include investigations of invertebrate drift dynamics in response to other types of microplastics, the role invertebrate size may play in determining their vulnerability to microplastic pollution, and framing more microplastic research in a field-realistic multiple-stressor context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175456DOI Listing

Publication Analysis

Top Keywords

fine sediment
16
invertebrate drift
12
microplastic
9
multiple-stressor context
8
community dynamics
8
dynamics response
8
main effects
8
benthic community
8
sediment microplastic
8
microplastics
7

Similar Publications

This data set includes the spatial model of the thickness and distribution of fine-grained floodplain deposits in the Leipzig floodplain area. The data set originates from borehole records provided by the Saxon State Office for Environment, Agriculture, and Geology [1]. The data processing involved the categorization of the stratigraphic descriptions of the borehole logs.

View Article and Find Full Text PDF

Sichuan section mainstem (SSM) in the upper Yangtze River (UYR) plays a crucial role in protecting the aquatic environment of the UYR and ensuring a safe water supply to the Three Gorges Reservoir. The impoundments of cascade reservoirs on the lower Jinsha River have significantly influenced sediment regime and phosphorus (P) transport in the SSM. This effect on water quality and safety remains poorly understood.

View Article and Find Full Text PDF

Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.

View Article and Find Full Text PDF

Characterizing Stream Condition with Benthic Macroinvertebrates in Southeastern Minnesota, USA: Agriculture, Channelization, and Karst Geology Impact Lotic Habitats and Communities.

Insects

January 2025

Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.

Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).

View Article and Find Full Text PDF

Rare earth elements (REE) are emerging aquatic trace pollutants. A total of 191 sediment samples were analyzed from the Yellow River estuary to study the REE geochemical behavior and environmental impact. The results showed that the samples contained high REE levels, and the average total amount of REE was 195.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!