Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: There are several studies that indicate that cancer development may be conditioned by the activation of some biological systems that involve the interaction of different biomolecules, such as adenosine and vascular endothelial growth factor. These biomolecules have been targeted of some drugs for treat of cancer; however, there is little information on the interaction of purine derivatives with adenosine and vascular endothelial growth factor receptor (VEGF-R1).
Objective: The aim of this research was to determine the possible interaction of purine (1: ) and their derivatives (2-31: ) with A, A-adenosine receptors, and VEGF-R1.
Methods: Theoretical interaction of purine and their derivatives with A, A-adenosine receptors and VEGF-R1 was carried out using the 5uen, 5mzj and 3hng proteins as theoretical tools. Besides, adenosine, cgs-15943, rolofylline, cvt-124, wrc-0571, luf-5834, cvt-6883, AZD-4635, cabozantinib, pazopanib, regorafenib, and sorafenib drugs were used as controls.
Results: The results showed differences in the number of aminoacid residues involved in the interaction of purine and their derivatives with 5uen, 5mzj and 3hng proteins compared with the controls. Besides, the inhibition constants (Ki) values for purine and their derivatives 5: , 9: , 10: , 14: , 15: , 16: , and 20: were lower compared with the controls CONCLUSIONS: Theoretical data suggest that purine and their derivatives 5: , 9: , 10: , 14: , 15: , 16: , and 20: could produce changes in cancer cell growth through inhibition of A, A-adenosine receptors and VEGFR-1 inhibition. These data indicate that these purine derivatives could be a therapeutic alternative to treat some types of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2376-5771 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!