Artificial intelligence (AI) has profoundly advanced the field of biomedical research, which also demonstrates transformative capacity for innovation in drug development. This paper aims to deliver a comprehensive analysis of the progress in AI-assisted drug development, particularly focusing on small molecules, RNA, and antibodies. Moreover, this paper elucidates the current integration of AI methodologies within the industrial drug development framework. This encompasses a detailed examination of the industry-standard drug development process, supplemented by a review of medications presently undergoing clinical trials. Conclusively, the paper tackles a predominant obstacle within the AI pharmaceutical sector: the absence of AI-conceived drugs receiving approval. This paper also advocates for the adoption of large language models and diffusion models as a viable strategy to surmount this challenge. This review not only underscores the significant potential of AI in drug discovery but also deliberates on the challenges and prospects within this dynamically progressing field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medj.2024.07.026DOI Listing

Publication Analysis

Top Keywords

drug development
16
drug discovery
8
clinical trials
8
artificial intelligence
8
development
5
drug
5
accelerating drug
4
discovery development
4
development clinical
4
trials artificial
4

Similar Publications

Background: Medication safety is crucial in clinical care. Although many hospitals have implemented prospective prescription review systems to manage medication use, the impact of these systems on pediatric patients is not yet fully understood.

Objectives: We explore the characteristics and economic impacts of pediatric prospective prescription review and identify factors influencing intervention success rates.

View Article and Find Full Text PDF

Background: Smoking is highly prevalent among HIV-infected individuals and is associated with high morbidity and mortality. Studies on smoking among HIV-infected individuals in China, especially compared to uninfected individuals, are scarce.

Purpose: This study aimed to investigate and compare the prevalence and factors associated with smoking between HIV-infected and uninfected men in Guilin, China.

View Article and Find Full Text PDF

Prognostic value and immune landscapes of disulfidptosis‑related lncRNAs in bladder cancer.

Mol Clin Oncol

February 2025

Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.

Disulfidptosis, which was recently identified, has shown promise as a potential cancer treatment. Nonetheless, the precise role of long non-coding RNAs (lncRNAs) in this phenomenon is currently unclear. To elucidate their significance in bladder cancer (BLCA), a signature of disulfidptosis-related lncRNAs (DRlncRNAs) was developed and their potential prognostic significance was explored.

View Article and Find Full Text PDF

Significance: Pulse oximeter measurements are commonly relied upon for managing patient care and thus often require human testing before they can be legally marketed. Recent clinical studies have also identified disparities in their measurement of blood oxygen saturation by race or skin pigmentation.

Aim: The development of a reliable bench-top performance test method based on tissue-simulating phantoms has the potential to facilitate pre-market assessment and the development of more accurate and equitable devices.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!