A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptome data are insufficient to control false discoveries in regulatory network inference. | LitMetric

Transcriptome data are insufficient to control false discoveries in regulatory network inference.

Cell Syst

Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Wyman Park Building, Suite 400 West, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD, USA; Malone Center for Engineering and Healthcare, Johns Hopkins University, Baltimore, MD, USA; Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA. Electronic address:

Published: August 2024

Inference of causal transcriptional regulatory networks (TRNs) from transcriptomic data suffers notoriously from false positives. Approaches to control the false discovery rate (FDR), for example, via permutation, bootstrapping, or multivariate Gaussian distributions, suffer from several complications: difficulty in distinguishing direct from indirect regulation, nonlinear effects, and causal structure inference requiring "causal sufficiency," meaning experiments that are free of any unmeasured, confounding variables. Here, we use a recently developed statistical framework, model-X knockoffs, to control the FDR while accounting for indirect effects, nonlinear dose-response, and user-provided covariates. We adjust the procedure to estimate the FDR correctly even when measured against incomplete gold standards. However, benchmarking against chromatin immunoprecipitation (ChIP) and other gold standards reveals higher observed than reported FDR. This indicates that unmeasured confounding is a major driver of FDR in TRN inference. A record of this paper's transparent peer review process is included in the supplemental information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642480PMC
http://dx.doi.org/10.1016/j.cels.2024.07.006DOI Listing

Publication Analysis

Top Keywords

control false
8
unmeasured confounding
8
gold standards
8
fdr
5
transcriptome data
4
data insufficient
4
insufficient control
4
false discoveries
4
discoveries regulatory
4
regulatory network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!