Cannabis sativa, a globally commercialized plant used for medicinal, food, fiber production, and recreation, necessitates effective identification to distinguish legal and illegal varieties in forensic contexts. This research utilizes multivariate statistical models and Machine Learning approaches to establish correlations between specific genotypes and tetrahydrocannabinol (Δ-THC) content (%) in C. sativa samples. 132 cannabis leaves samples were obtained from legal growers in Piedmont, Italy, and illegal drug seizures in Turin. Samples were genetically profiled using a 13-loci STR multiplex and their Δ-THC content was detected through quantitative GC-MS analysis. This study aims to assess the use of supervised classification modelling on genetic data to distinguish cannabis samples into legal and illegal categories, revealing distinct clusters characterized by unique allele profiles and THC content. t-distributed Stochastic Neighbor Embedding (t-SNE), Random Forest (RF) and Partial Least Squares Regression (PLS-R) were executed for the machine learning modelling. All the tested models resulted effective discriminating between legal samples and illegal. Although further validation is necessary, this study presents a novel forensic investigative approach, potentially aiding law enforcement in significant marijuana seizures or tracking illicit drug trafficking routes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2024.103123DOI Listing

Publication Analysis

Top Keywords

machine learning
12
cannabis sativa
8
sativa samples
8
legal illegal
8
Δ-thc content
8
samples legal
8
samples
6
initial exploration
4
exploration machine
4
learning establishing
4

Similar Publications

Objective: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.

Method: This retrospective study involved singleton pregnancies at University Malaya Medical Centre, Malaysia, developed a nuchal thickness chart and evaluated its predictive value for small-for-gestational-age using Malaysian and Singapore cohorts.

View Article and Find Full Text PDF

Radiography is a field of medicine inherently intertwined with technology. The dependency on technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable in US and MRI, advancements in technology have made it possible in CT, with ongoing studies aimed at further optimization.

View Article and Find Full Text PDF

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.

View Article and Find Full Text PDF

Background And Aim: Discriminating between idiosyncratic drug-induced liver injury (DILI) and autoimmune hepatitis (AIH) is critical yet challenging. We aim to develop and validate a machine learning (ML)-based model to aid in this differentiation.

Methods: This multicenter cohort study utilised a development set from Beijing Friendship Hospital, with retrospective and prospective validation sets from 10 tertiary hospitals across various regions of China spanning January 2009 to May 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!