Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We assessed in vivo the protective effects and underlying antioxidant and anti-inflammatory properties of dry green tee extract (GTE) on glomerular and tubular kidney function and structure in an experimental model of gentamicin (GEN)-induced nephrotoxicity. Wistar rats were divided into four groups and treated daily for 10 days. The control group received distilled water; the GTE group received 20 μg/g body weight (BW) GTE by gavage; the GEN group received 100 mg/g BW GEN intraperitoneally; and the GEN+GTE group received GTE and GEN simultaneously, as described above. At the beginning and end of treatment, the serum creatinine, fractional excretion of sodium and potassium, and plasma heme oxygenase (HO)-1 levels and oxidative stress (OS) were assessed. At the end of the experiment, kidney fragments were collected for histological evaluation and immunohistochemical studies of cyclooxygenase (COX)-2 and nuclear factor (NF)kB. The levels of interleukin (IL)-1b, IL-4, IL-6, IL-10 and monocyte chemotactic protein (MCP)-1 were measured in kidney tissue. The results showed that GTE attenuated significantly kidney structural injury and prevented GEN-induced kidney functional injury (glomerular and tubular function). GTE significantly attenuated the kidney tissue increase of the proinflammatory mediators NF-kB, COX2, IL-1b and MCP-1 and significantly increased the kidney expression of the anti-inflammatory cytokines IL-6 and IL-10. However, GTE did not prevent OS increase in GEN-treated animals. In conclusion, GTE protected against GEN nephrotoxicity, likely due to direct blockade of the inflammatory cascade, which might had occurred independently of its antioxidant effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.117267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!