In this contribution, we report a straightforwardly and easily one-step synthesis of a small family of composites based in polyaniline grafted on HB2 graphite (PANI@UG) and their copper-doped derivatives (CuPANI@UG). The PANI@UG composites were synthesized through electrochemical polymerization using cyclic voltammetry (CV) in three different acidic media: i) acetic acid (AcOH) at high and low concentration (12 and 1 M, using KCl as electrolytic support); ii) a mixture of AcOH and sulfuric acid (HSO, which have two roles: as electrolytic support and proton source) and iii) a mixture of acetonitrile (NCCH) and HSO, under atmospheric conditions. Once the best conditions were achieved, our next step was focused on obtaining the CuPANI@UG composites using a solution of aniline and CuSO (50 mM) in AcOH:HSO and NCCH:HSO solutions, respectively. All composites were characterized by CV, FT-IR, SEM and MALDI-TOF experiments. So, the current value was enhanced for the CuPANI@UG composite, which have three potential catalytical applications in: i) HClO acid sensing, ii) click chemistry and iii) sunlight drive photo-activation of HO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202400942DOI Listing

Publication Analysis

Top Keywords

acid sensing
8
sensing click
8
click chemistry
8
electrolytic support
8
eco-friendly electrosynthesis
4
electrosynthesis cu-pani-pencil
4
cu-pani-pencil composite
4
composite enhanced
4
enhanced current
4
acid
4

Similar Publications

Fluorophores that respond to external stimuli, such as changes in pH, have utility in bio-imaging and sensing applications. Almost all pH-responsive fluorophores rely on complex syntheses and the use of pH-responsive functional groups that are peripheral to the fluorophore framework. In this work, pH-responsive boron-containing heterocycles based on tridentate acyl pyridylhydrazone ligands were prepared.

View Article and Find Full Text PDF

Herein we present a series of luminescent Tb(III)-probes ([Tb-Ltrp], [Tb-Ltyr], and [Tb-Lphe]) for sensing and discriminating purine nucleoside polyphosphates (NPP) based on a modified DTTA chelator appended to aromatic amino acids (Laa). The optically most effective luminescent [Tb-Ltrp] probe preferentially discriminates the guanine-NPPs over the adenine-NPPs PeT-based modulation of Tb(III) luminescence within the biological concentration range.

View Article and Find Full Text PDF

Background: Patients with ulcerative colitis (UC) exhibit abnormal amino acid (AA) metabolism. Taste receptors play a crucial role in the detection of intestinal AAs. Nevertheless, it remains unclear whether UC patients exhibit abnormal expression of these receptors in the colon.

View Article and Find Full Text PDF

Various hydrogels have been explored to create minimally invasive microneedles (MNs) to extract interstitial fluid (ISF). However, current methods are time-consuming and typically require 10-15 min to extract 3-5 mg of ISF. This study introduces two spiral-shaped swellable MN arrays: one made of gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA), and the other incorporating a combination of PVA, polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) for fast ISF extraction.

View Article and Find Full Text PDF

Polarity Sensor Based on Multivariate Lanthanide Metal-Organic Framework for Constructing Biosensing Platform.

Anal Chem

January 2025

Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

It is significant but challenging to develop polarity sensors that can measure multiscenario polarity in a modular, customized, sensitive, and accurate manner. In this work, we proposed a polarity sensor based on multivariate lanthanide metal-organic framework (Ln-MOF) nanoclusters through the modular programming design of ligands. This multivariate Ln-MOF combines the advantages of modularity, ease of design, high flexibility and low cost, and can be precisely customized for different polarity systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!