The C-H hydroxylation of the pyridine C3 position is a highly desirable transformation but remains a great challenge due to the inherent electronic properties of this heterocycle core which bring difficulties in chemical reactivity and regioselectivity. Herein we present an efficient method for formal C3 selective hydroxylation of pyridines via photochemical valence isomerization of pyridine -oxides. This metal-free transformation features operational simplicity and compatibility with a diverse array of functional groups, and the resulting hydroxylated products are amenable to further elaboration to synthetically useful building blocks. The synthetic utility of this strategy is further demonstrated in the effective late-stage functionalization of pyridine-containing medicinally relevant molecules and versatile derivatizations of 3-pyridinols.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c10057DOI Listing

Publication Analysis

Top Keywords

selective hydroxylation
8
hydroxylation pyridines
8
pyridines photochemical
8
photochemical valence
8
valence isomerization
8
isomerization pyridine
8
pyridine -oxides
8
-oxides c-h
4
c-h hydroxylation
4
hydroxylation pyridine
4

Similar Publications

Antioxidant and anticancer effects of kiwi () fermented beverage using .

Food Sci Biotechnol

January 2025

Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea.

Kiwi fermented beverages utilizing lactic acid bacteria exhibit a decrease in sugar content, pH and increase in total acidity. The maximum CFU is observed in 20% kiwi fermented beverages containing . For the most efficient fermentation conditions, 20% kiwi fermented beverages fermented at 24 h was selected for use in subsequent experiments.

View Article and Find Full Text PDF

Introduction: Non-steroidal anti-inflammatory drugs are associated with severe gastrointestinal irritation upon prolonged use, largely due to their carboxylic (-- COOH) functional group.

Aim: To address this issue, we aimed to synthesize diclofenac conjugates with glucosamine and chitosan, converting the -COOH group into an amide (-CONH-) via a mechanochemical, environmentally friendly method.

Method: In this study, diclofenac acid was first converted to its acid chloride using thionyl chloride under mechanochemical conditions and subsequently reacted with glucosamine base and chitosan.

View Article and Find Full Text PDF

Effect of isoflavone structures on the formation of starch-isoflavone complexes: Experimental and molecular dynamics analysis.

Int J Biol Macromol

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Isoflavones were the commonly polyphenols capable of forming inclusion complexes with starch to slow starch enzymatic digestion. However, the impact of isoflavone structures on the formation of starch-isoflavone complexes was not well understood. In this study, isoflavones with distinct structurally differences, including daidzein, genistein, biochanin A, genistin, and puerarin, were selected to examine the interaction between starch and these isoflavones utilizing both experimental and molecular dynamics analysis.

View Article and Find Full Text PDF

Application of lanthanum-modified silk fibroin/polyvinyl alcohol film for highly selective defluoridation in brick tea infusion.

Int J Biol Macromol

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.

View Article and Find Full Text PDF

Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach.

Chemosphere

January 2025

Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840 South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium. Electronic address:

The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H/Ar gas at 500°C, and the introduction of oxygen vacancies was confirmed using various characterization techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!