Download full-text PDF

Source

Publication Analysis

Top Keywords

imaging findings
4
findings massive
4
massive pulmonary
4
pulmonary thromboembolism
4
imaging
1
massive
1
pulmonary
1
thromboembolism
1

Similar Publications

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!