Dengue is a serious epidemic for Bangladesh affecting thousands of lives. This study aimed to identify and determine the prevalence of the circulating variants of dengue virus (DENV) and their association with demographics and clinical manifestations among the dengue-infected patients. A total of 711 participants with NS1 antigen positivity were enrolled, followed by viral RNA extraction from the collected blood samples and a multiplex real-time reverse transcription-polymerase chain reaction (RT-PCR) assay to determine the dengue virus serotypes. Of 711 dengue-infected patients, 503 (70.7%) were male. Among different age groups, most of the patients were 21-30 years old (n = 255, 35.9%). The DENV2 (n = 483, 67.9%) serotype was more prevalent than the DENV3 (n = 144, 20.3%) and DENV1 (n = 84, 11.8%). The duration of fever was highest in the DENV-1 patients (4.79 ± 1.84 days) in contrast to DENV-3 (4.48 ± 1.68 days) and DENV-2 (4.33 ± 1.45 days) (P = 0.039). Importantly, five highly populated areas were identified as dengue hotspots in Chittagong metropolitan city. Our results provide crucial insights into the patterns of dengue virus transmission and severity among southern Bangladeshi population, thereby aiding in the development of targeted public health interventions and management strategies to combat future outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393644PMC
http://dx.doi.org/10.1556/1886.2024.00069DOI Listing

Publication Analysis

Top Keywords

dengue virus
16
virus serotypes
8
dengue-infected patients
8
dengue
6
circulating dengue
4
virus
4
serotypes demographics
4
demographics epidemiology
4
epidemiology 2023
4
2023 dengue
4

Similar Publications

Dengue virus (DENV) is an important arthropod-borne viral disease, with four antigenically and genetically diverse serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Timely and accurate diagnosis of dengue virus serotypes is crucial for the management of outbreaks. This study focussed on the development of a RT-PCR based lateral flow strip assay to detect DENV serotypes in a dual detection manner without using gel electrophoresis.

View Article and Find Full Text PDF

T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease.

Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients.

View Article and Find Full Text PDF

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!