Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic--glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c05657 | DOI Listing |
Biomaterials
December 2024
Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Tumor cells transmit various immunosuppressive signals and induce a dysfunctional state in T cells, which essentially leads to immune escape and tumor progression. However, developing effective strategies to counteract the domestication of T cells by tumor cells remains a challenge. Here, we prepared pH-responsive lipid nanoparticles (NL/PLDs) co-loaded with PCSK9 shRNA, lonidamine (LND), and low-dose doxorubicin (DOX).
View Article and Find Full Text PDFiScience
November 2024
Medical Research Center, Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China.
Chemotherapy resistance is still a great challenge for clinical treatment of lung cancer. Here, we found that doxorubicin (DOX) induced an increase of labile Zn in lung cancer cells, and these labile Zn protected tumor cells against DOX cytotoxicity. Nanoparticles encapsulating N,N,N',N'-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) were then constructed to chelate labile Zn for tumor therapy.
View Article and Find Full Text PDFJ Vet Med Sci
December 2024
Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
Feline mammary tumors (FMT) are the third most common form of neoplasm in cats. The prognosis of FMT is poor due to its high malignancy and metastatic potential. The outcomes of treatment using the common anticancer drug doxorubicin (DOX) are unsatisfactory, with resistance inevitably leading to treatment failure and disease recurrence.
View Article and Find Full Text PDFACS Nano
September 2024
Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!