A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establishment and Evaluation of a Noninvasive Metabolism-Related Fatty Liver Screening and Dynamic Monitoring Model: Cross-Sectional Study. | LitMetric

Establishment and Evaluation of a Noninvasive Metabolism-Related Fatty Liver Screening and Dynamic Monitoring Model: Cross-Sectional Study.

Interact J Med Res

State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Published: August 2024

Background: Metabolically associated fatty liver disease (MAFLD) insidiously affects people's health, and many models have been proposed for the evaluation of liver fibrosis. However, there is still a lack of noninvasive and sensitive models to screen MAFLD in high-risk populations.

Objective: The purpose of this study was to explore a new method for early screening of the public and establish a home-based tool for regular self-assessment and monitoring of MAFLD.

Methods: In this cross-sectional study, there were 1758 eligible participants in the training set and 200 eligible participants in the testing set. Routine blood, blood biochemistry, and FibroScan tests were performed, and body composition was analyzed using a body composition instrument. Additionally, we recorded multiple factors including disease-related risk factors, the Forns index score, the hepatic steatosis index (HSI), the triglyceride glucose index, total body water (TBW), body fat mass (BFM), visceral fat area, waist-height ratio (WHtR), and basal metabolic rate. Binary logistic regression analysis was performed to explore the potential anthropometric indicators that have a predictive ability to screen for MAFLD. A new model, named the MAFLD Screening Index (MFSI), was established using binary logistic regression analysis, and BFM, WHtR, and TBW were included. A simple rating table, named the MAFLD Rating Table (MRT), was also established using these indicators.

Results: The performance of the HSI (area under the curve [AUC]=0.873, specificity=76.8%, sensitivity=81.4%), WHtR (AUC=0.866, specificity=79.8%, sensitivity=80.8%), and BFM (AUC=0.842, specificity=76.9%, sensitivity=76.2%) in discriminating between the MAFLD group and non-fatty liver group was evaluated (P<.001). The AUC of the combined model including WHtR, HSI, and BFM values was 0.900 (specificity=81.8%, sensitivity=85.6%; P<.001). The MFSI was established based on better performance at screening MAFLD patients in the training set (AUC=0.896, specificity=83.8%, sensitivity=82.1%) and was confirmed in the testing set (AUC=0.917, specificity=89.8%, sensitivity=84.4%; P<.001).

Conclusions: The novel MFSI model was built using WHtR, BFM, and TBW to screen for early MAFLD. These body parameters can be easily obtained using a body fat scale at home, and the mobile device software can record specific values and perform calculations. MFSI had better performance than other models for early MAFLD screening. The new model showed strong power and stability and shows promise in the area of MAFLD detection and self-assessment. The MRT was a practical tool to assess disease alterations in real time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377904PMC
http://dx.doi.org/10.2196/56035DOI Listing

Publication Analysis

Top Keywords

fatty liver
8
cross-sectional study
8
screen mafld
8
eligible participants
8
body composition
8
binary logistic
8
logistic regression
8
regression analysis
8
named mafld
8
rating table
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!