AI Article Synopsis

Article Abstract

We developed three machine learning models that predict hour-by-hour probabilities of a future lapse back to alcohol use with increasing temporal precision (i.e., lapses in the next week, next day, and next hour). Model features were based on raw scores and longitudinal change in theoretically implicated risk factors collected through ecological momentary assessment. Participants ( = 151, 51% male, = 41, 87% White, 97% non-Hispanic) in early recovery (1-8 weeks of abstinence) from alcohol use disorder provided 4 × daily ecological momentary assessment for up to 3 months. We used grouped, nested cross-validation to select the best models and evaluate the performance of those best models. Models yielded median areas under the receiver operating curves of 0.89, 0.90, and 0.93 in the 30 held-out test sets for week-, day-, and hour-level models, respectively. Some feature categories consistently emerged as being globally important to lapse prediction across our week-, day-, and hour-level models (i.e., past use, future self-efficacy). However, most of the more punctate, time-varying constructs (e.g., craving, past stressful events, arousal) appear to have a greater impact within the next-hour prediction model. This research represents an important step toward the development of a smart (machine learning guided) sensing system that can both identify periods of peak lapse risk and recommend specific supports to address factors contributing to this risk. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556439PMC
http://dx.doi.org/10.1037/abn0000901DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning models
8
lapse prediction
8
alcohol disorder
8
ecological momentary
8
momentary assessment
8
best models
8
week- day-
8
day- hour-level
8
hour-level models
8

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!