Recycled manure solids has emerged as a promising alternative for animal bedding, owing to its economic feasibility, ready availability on farms, and soft, non-abrasive nature. This research aimed to assess the impact of recycled manure solids (RMS) bedding, combined with a conditioner containing 7.5% lime and 6% sodium hydrosulphate, on dairy cow welfare and gait kinematics over three months. Hock and knee injury scores, lameness incidence, and gait kinematic parameters were evaluated for animals housed on cement flooring (Control), RMS bedding (Treatment I), and conditioner-added RMS bedding (Treatment II) on days 0, 45, and 90 of the experiment with six crossbred cows in each group. The results revealed a significant reduction (p < 0.05) in lameness scores (5-point scale) for animals in both the RMS and conditioner-added RMS groups, with scores of 1.09 ± 0.05 and 1.04 ± 0.03, respectively, compared to those on cement floors. Moreover, a noteworthy decrease (p < 0.05) in knee and hock injury scores (4-point scale) was observed in the RMS groups, indicating a potentially positive impact on joint health. Gait kinematic analysis demonstrated that animals in the RMS (1.03 ± 0.04 m/s) and conditioner-added RMS (1.02 ± 0.06 m/s) groups exhibited higher walking speeds and increased step angles (158.59 ± 4.82° and 149.58 ± 3.85°) compared to their cement-floor counterparts. No significant changes (p > 0.05) were observed in stride length, step asymmetry, step length, and step width. The study concluded that the conditioner incorporated recycled manure solids resulting in a substantial decrease in lameness incidence and a reduction in hock and knee injuries among dairy cows. Additionally, the improved gait kinematics observed in non-lame animals suggest that this bedding combination positively influences overall animal well-being. These findings underscore the potential of sustainable bedding practices to enhance both physical health and locomotor behaviour in dairy cattle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11250-024-04088-7 | DOI Listing |
J Nutr
December 2024
Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States. Electronic address:
We have exceeded the earth's carrying capacity to manage the amount of nitrogen (N) waste being generated globally, which can have devastating environmental consequences if immediate action is not taken. Our global food system is a major N user and contributor to N waste. Pork is the most consumed animal-derived protein source in the world, but like other food producing animals, the nitrogen use efficiency of converting dietary protein to edible lean meat is less than 50%.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
The widespread use of Recycled Manure Solids (RMS) as cow bedding material is not without risks, since cattle manure may act as a vehicle for pathogenic and antimicrobial resistant bacteria dissemination. Thus, our aim was to evaluate RMS-supplemented with a pine biochar produced in Portugal as a new cow bedding material, since the use of biochar has been shown to have the potential to mitigate the impact of relevant bacterial species when added to animal manure microbiota. Our experimental setup consisted on fresh RMS samples that were collected on a commercial dairy farm and placed in naturally-ventilated containers for a total of 4 groups: 1-non-supplemented RMS; 2-RMS supplemented with 2.
View Article and Find Full Text PDFSci Total Environ
December 2024
Nanjing County Feng Xiuzhen Animal Husbandry Co., Ltd. Fujian, 350108, PR China.
Regulation of dietary nutrient fractions to control the release of labile manure pollutants in swine production remains a challenge. Feeding trials were conducted to assess the impact of dietary nutrient fractions on labile manure composition and pollution potential in pigs at different growth stages. The pigs were selected based on age (weaning = 60 days, feeding = 100 days, and finishing = 160 days), health, and average body weight (23.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
Effective management of urban solid waste is critical for achieving sustainable development goals. One key aspect of this challenge is the recycling of anaerobically digested residues from anaerobic digestion of food waste, which plays a pivotal role in promoting sustainability. However, there is a gap in understanding the feasibility and effectiveness of converting these digested residues into valuable fertilizers through composting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!