Rabbits are essential for commercial meat production due to their efficient growth and productivity, breeds like New Zealand White (NZW), Californian (CAL), and Gabali (GAB) rabbits offer unique genetic traits in litter, growth, and carcass traits. This study aimed to evaluate heritability (h), genetic and phenotypic correlations (rg and rp) for litter size, body weight and carcass traits across California (CAL), New Zealand white (NZW) and Gabali (GA) rabbits. Along with exploring gene expression profiles of TBC1D1, NPY, AGRP, POMC, Leptin, GH, GHR, IGF-1, CAA, GPR, ACC, CPT1, FAS, and CART in the brain, liver, and meat tissues of different rabbit breeds. The breed genotype had a significant impact on litter size (LS), litter weight (LW), body weight at 12 weeks (BW12), and daily weight gain (DWG) traits. NZW rabbits displayed superior performance in terms of litter size and litter weight, while CAL rabbits recorded the highest values for BW12 and DWG. Heritability estimates (h) were generally low for litter size (ranging from 0.05 to 0.12) and medium for body weight (ranging from 0.16 to 0.31). Both genetic (r) and phenotypic (r) correlations for litter size were positive and moderate (ranging from 0.08 to 0.48), while correlations for body weight ranged from 0.21 to 0.58. Additionally, CAL rabbits exhibited higher carcass traits compared to NZW and GA rabbits. In terms of breed-specific gene expression patterns, New Zealand White (NZW) rabbits displayed the highest expression levels of key genes related to energy metabolism (TBC1D1), appetite regulation (NPY, AGRP, POMC), nutrient transport (CAA), and G protein-coupled receptors (GPR) in both brain and liver tissues. Californian (CAL) rabbits exhibited superior gene expression of the ACC gene in brain tissue and GH, GHR, and IGF-1 genes in brain and meat tissues. Gabali (GAB) rabbits demonstrated the highest expression levels of TBC1D1, NPY, AGRP, GPR, and ACC genes in meat tissues. These breed-specific gene expression differences, combined with genetic evaluation efforts, have the potential to enhance reproductive and productive performance in rabbits, offering valuable insights for rabbit breeding programs and genetic selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341605PMC
http://dx.doi.org/10.1007/s11250-024-04082-zDOI Listing

Publication Analysis

Top Keywords

litter size
24
body weight
20
gene expression
20
carcass traits
16
zealand white
16
rabbits
12
white nzw
12
npy agrp
12
meat tissues
12
nzw rabbits
12

Similar Publications

Functional effects of BMPR1B in porcine endometrium provides novel insights into the high fecundity of Taihu pigs.

Int J Biol Macromol

December 2024

Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; CAU-SC Advanced Agricultural & Industrial institute, CAU-SCCD Advanced Agricultural & Industrial institute, China Agricultural University, Chengdu 611430, China. Electronic address:

Litter size in pigs is affected by factors such as ovulation number, embryonic survival, and uterine environment conditions. Endometrial epithelial and stromal cells represent the first site of contact between the embryo and sows; therefore, dynamic changes in the growth and development of these cells are among the major factors affecting the intrauterine environment and implantation. Bone morphogenetic protein receptor type-1B (BMPR1B) is a receptor of the bone morphogenetic protein (BMP) family that has been identified as a candidate gene for reproductive traits in pigs.

View Article and Find Full Text PDF

Genetic selection for growth rate has often been related with potential negative effects on various reproductive traits across different species. Using rabbit as a model, this study has evaluated for the first time how genetic selection for growth rate has affected feed efficiency, resource allocation, blood traits, reproductive performance and survival during five reproductive cycles in rabbit does. To this end, we used 88 reproductive rabbit females from two vitrified and rederived populations of the same paternal line, differing only in 18 generations of genetic selection for growth rate (n = 44 for R19V and n = 44 for RV37V).

View Article and Find Full Text PDF

Thyroid hormones (TH) play a key role in fetal brain development. While severe thyroid dysfunction, has been shown to cause neurodevelopmental and reproductive disorders, the rising levels of TH-disruptors in the environment in the past few decades have increased the need to assess effects of subclinical (mild) TH insufficiency during gestation. Since embryos do not produce their own TH before mid-gestation, early development processes rely on maternal production.

View Article and Find Full Text PDF

Peripartum energy metabolism of prolific ewes and their progeny in response to prepartum feeding and litter size.

Animal

November 2024

Département des sciences animales, Université Laval, Pavillon Paul-Comtois, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada. Electronic address:

In late gestation, the increased energy demand to support the rapid fetal growth can induce an acute negative energy balance associated with a high risk of pregnancy toxemia, especially for prolific ewes (carrying two or more fetuses). The current study was conducted to evaluate the effects of dietary energy during the last 6 weeks prepartum on the energy metabolism dynamic responses and the newborn lamb metabolic profile in prolific ewes. Forty-five crossbred (Dorset × Romanov) ewes were randomly assigned to 1 of 3 dietary energy densities: E: 8.

View Article and Find Full Text PDF

Microplastics (MPs, <5 mm) are widespread in coastal ecosystems and pose a growing global concern; however, their presence in deep-sea environments remains underexplored, especially in the Indian region. This study addresses this gap by providing the first comprehensive documentation of MPs in the Central Indian Ocean Basin (CIOB) at a depth of 5000 m, marking the initial effort to assess their presence and abundance in deep-sea core samples. The study investigated the MP concentration, composition and potential sources, revealing a size range between 10 μm and 4900 μm, with average abundances recorded at BC20 (10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!