The advancement of highly robust and efficient electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions is imperative for the sustainable production of green hydrogen. In accomplishing sustainable and sturdy electrocatalysts for oxygen evolution at low pH, the challenge is tough for non-iridium/ruthenium-based electrocatalysts. This study elaborates on the intrinsic alterations in electronic arrangements and structural disorder upon the precise activation of an octamolybdate cluster-based solid [{Cu(pz)}MoO]·2HO through room temperature grinding with rGO (reduced graphene oxide), resulting in enhanced conductivity, stability, and activity of the electrocatalyst towards the acidic OER without employing any benchmark metal ion (Ru or Ir). Additionally, the work function of the composites was found to be low compared to that of pristine polyoxometalates (POMs), indicative of the improved conducive behavior, which is lacking in the POM structure. The catalyst displays a notably reduced overpotential of 185 mV to achieve a current density of 10 mA cm, coupled with significant stability lasting 24 hours at a higher current density of 100 mA cm. These findings propose the manipulation of crystalline POMs with highly conductive non-metallic elements to facilitate superior water oxidation at lower pH levels which can help in the production of green hydrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr02645d | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:
Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:
Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:
Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan.
This study presents a novel method for creating customized brain slice matrices using Computer-Aided Design (CAD) and 3D printing technology. Brain Slice Matrices are essential jigs for the reproducible preparation of brain tissue sections in neuroscience research. Our approach leverages the advantages of 3D printing, including design flexibility, cost-effectiveness, and rapid prototyping, to produce custom-made brain matrices based on specific morphometric measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!