Relevance: Nasal congestion is one of the most common complaints in otolaryngology practice and can significantly impact the quality of life for patients. Objective and subjective assessments provide different information, but objective assessment of nasal obstruction is crucial for accurate diagnosis and appropriate treatment. This review demonstrates that peak nasal inspiratory flow (PNIF) is a reproducible and reliable measure of objective nasal patency. It is inexpensive, easy to use, suitable for serial measurements, and can be applied to patients of different age groups. PNIF is recommended for use in every outpatient clinic that treats patients with nasal congestion.
Objective: To summarize the data on the application of PNIF in diagnosing conditions of the nasal airways.
Material And Methods: Publications (articles and relevant abstracts) available in the PubMed and eLibrary databases were analyzed.
Conclusion: PNIF offers an objective and non-invasive assessment of nasal airflow, aiding in diagnosis, therapy monitoring, and preoperative planning. Further research, standardization, and establishment of normative data will enhance the informative value of peak nasal inspiratory flow in assessing nasal obstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/otorino20248904147 | DOI Listing |
J Aerosol Sci
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA.
The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.
View Article and Find Full Text PDFInt Forum Allergy Rhinol
January 2025
Universidade Estadual de Londrina, Londrina, Brazil.
Background: Recent studies have extensively explored new non-invasive and side-effect-free therapeutic strategies for the treatment of allergic rhinitis (AR). Photobiomodulation therapy (PBMT) utilizes photons from the red to infrared spectrum to modulate biological processes, exhibiting anti-inflammatory and regenerative properties. The objective of our study was to evaluate the efficacy of PBMT in patients with AR.
View Article and Find Full Text PDFRespir Physiol Neurobiol
January 2025
School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia. Electronic address:
Central and Obstructive Sleep Apnea (CSA and OSA), Chronic Obstructive Pulmonary Disease (COPD), and Obesity Hypoventilation Syndrome (OHS) disrupt breathing patterns, posing significant health risks and reducing the quality of life. Bilevel Positive Airway Pressure (BiPAP) therapy offers adjustable inhalation and exhalation pressures, potentially enhancing treatment adaptability for the above diseases. This is the first-ever study that employs Computational Fluid Dynamics (CFD) to examine the biomechanical impacts of BiPAP under four settings: Inspiratory Positive Airway Pressure (IPAP)/Expiratory Positive Airway Pressure (EPAP) of 12/8, 16/6, and 18/8 cmHO, compared to a without-BiPAP scenario of zero-gauge pressure.
View Article and Find Full Text PDFTuberculosis (Edinb)
January 2025
CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India. Electronic address:
The limitations of existing mouse models of lung infection with Mycobacteroides abscessus impede drug discovery and development. In contrast to current animal models that introduce NTM intravenously or by intranasal/intra-tracheal instillation or via bronchoscopy-guided insufflation, we developed a dry powder inhalation (DPI) of M. abscessus ATCC 19977 that generated paucibacillary lung infection and histopathology in immunocompetent mice.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America.
The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!