Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plasmonic nanomaterials such as Au, Ag, and Cu are widely recognized for their strong light-matter interactions, making them promising photothermal materials for solar steam generation. However, their practical use in water evaporation is significantly limited by the trade-off between high costs and poor stability. In this regard, we introduce a novel, nonmetallic dual plasmonic TiN/MoO composite. This composite features a three-dimensional, urchin-like biomimetic structure, with plasmonic TiN nanoparticles embedded within a network of plasmonic MoO nanorods. As a solar absorber, the TiN/MoO composite achieves a high evaporation rate of ∼2.05 kg m h with an energy efficiency up to 106.7% under 1 sun illumination, outperforming the state-of-the-art plasmonic systems. The high photothermal stability and unique dual plasmonic nanostructure of the TiN/MoO composite are demonstrated by advanced laser-heating transmission electron microscopy and photon-induced near-field electron microscopy/electron energy-loss spectroscopy, respectively. This work provides new inspiration for the design of plasmonic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c03018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!