Belitic cements are a greener alternative to Ordinary Portland Cement due to the lower CO associated with their production. However, their low reactivity with water is currently a drawback, resulting in longer setting times. In this study, we utilize a combination of evolutionary algorithms and machine learning atomic potentials (MLPs) to identify previously unreported belite polymorphs that may exhibit higher hydraulic reactivity than the known phases. To address the high computational demand of this methodology, we propose a novel transfer learning approach for generating MLPs. First, the models are pretrained on a large set of classical data (ReaxFF) and then retrained with density functional theory (DFT) data. We demonstrate that the transfer learning enhanced potentials exhibit higher accuracy, require less training data, and are more transferable than those trained exclusively on DFT data. The generated machine learning potential enables a fast, exhaustive, and reliable exploration of the dicalcium silicate polymorphs. This includes studying their stability through phonon analysis and calculating their structural and elastic properties. Overall, we identify ten new belite polymorphs within the energy range of the existing ones, including a layered phase with potentially high reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00479DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
machine learning
12
learning enhanced
8
learning atomic
8
atomic potentials
8
belite polymorphs
8
exhibit higher
8
dft data
8
learning
6
exploring polymorphism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!