We demonstrate the live monitoring of extracellular acidification on digital microfluidics using a chip-integrated fluorescent pH sensor film. The metabolism of various types of live cells including cancer and healthy cells were investigated through recording the extracellular pH (pH) change. An optical pH sensor array was integrated onto a digital microfluidic (DMF) interface with a diameter of 2 mm per pH-sensing spot. Miniaturized, label-free, and noninvasive monitoring of extracellular acidosis on DMF was realized within a pH range of 5.0-8.0 with good sensitivity and rapid response. The pH sensitive probe fluorescein-5-isothiocyanate was covalently bound to poly-2-hydroxyethyl methacrylate and immobilized on a circularly exposed indium tin oxide interface on the DMF top plate. The surface of the fabricated pH sensor spots was modified with polydopamine via self-polymerization. Direct cell attachment on the sensor surfaces enabled rapid pH detection near the cell membranes. Automatic medium exchange on cell-attached pH sensing sites was achieved though solution passive dispensing on DMF. The developed DMF platform was used to monitor the pH decrease during MCF-7 and A549 cancer cell proliferation due to abnormal glycolysis metabolism. A rapid pH decrease at the pH sensing area in the presence of cancer cells could be detected within 2 min after fresh medium exchange, while no obvious pH change was observed with HUVEC healthy cells. Real-time detection of cell acidification and cellular response to different metabolic conditions such as higher glucose levels or administered anticancer drugs was possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c02319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!