J Chem Phys
College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
Published: August 2024
Transition-metal selenides have been extensively studied as promising electrode materials for supercapacitors. Engineering amorphous/crystalline heterostructures is an effective strategy to improve rich active sites for accelerating redox reaction kinetics but still lacks exploration. In this study, an amorphous/crystalline heterostructure was designed and constructed by selenizing the self-sacrificial template NiMnS to generate amorphous Mn/polycrystalline Ni0.85Se-NiSe2 heterophase via the phase transformation from metal sulfide into metal selenide. The synergy of the complementary multi-components and amorphous/polycrystalline heterophase could enrich electron/ion-transport channels and expose abundant active sites, which accelerated electron/ion transfer and Faradaic reaction kinetics during charging/discharging. As expected, the optimal NiMnSe exhibited a high specific charge (1389.1 C g-1 at 1 A g-1), a good rate capability, and an excellent lifespan (88.9% retention). Moreover, the fabricated NiMnSe//activated carbon device achieved a long cycle life and energy density of 48.0 W h kg-1 at 800 W kg-1, shedding light on the potential for use in practical applications, such as electrochemical energy-storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0222583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.