The whitefly, a polyphagous insect pest feeding on nearly 1328 plant species, is a major threat to global cotton production and incurs up to 50% yield losses in cotton production in Pakistan. We investigated whether increased aspartate in phloem sap imparts whitefly toxicity and protects cotton plants from intense damage. The enzymatic step for aspartate production is carried through aspartate aminotransferase (AAT). In this study, we constitutively overexpressed the Oryza sativa cytoplasmic AAT (OsAAT2) under the CaMV35S promoter in Gossypium hirsutum cv. CIM-482. Real-time PCR analysis of the AAT transcripts revealed a 2.85- to 31.7-fold increase in mRNA levels between the different cotton lines. A substantial increase in the free-amino acid content of the major N-assimilation and transport amino acids (aspartate, glutamate, asparagine, and glutamine) was seen in the phloem sap of the transgenic cotton lines. The bioassay revealed that the two transgenic cotton lines with the highest free aspartate content in the phloem sap exhibited 97 and 94% mortality in the adult whitefly population and a 98 and 96% decline in subsequent nymph populations, respectively. There was also a significant change in the physiological behaviour of the transgenic cotton lines, with an increased net assimilation (A), gaseous exchange (Gs) and rate of transpiration (E). Improved morphological characteristics like plant height, total number of bolls and fiber yield were recorded in transgenic cotton lines. The AAT gene shows promise in mitigating whitefly infestations and enhancing the overall health and yield of cotton plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14491DOI Listing

Publication Analysis

Top Keywords

transgenic cotton
20
cotton lines
20
phloem sap
12
cotton
10
increased aspartate
8
gossypium hirsutum
8
cotton production
8
cotton plants
8
transgenic
5
whitefly
5

Similar Publications

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Soybean looper (SBL), (Walker 1858) (Lepidoptera: Noctuidae), is one of the most damaging insect pests of soybean, (L.) Merr., in the mid-south region of the United States, and causes significant economic losses to cotton, sunflower, tomato, and tobacco crops in the United States, Brazil, and Argentina.

View Article and Find Full Text PDF

COBRA-LIKE 9 modulates cotton cell wall development via regulating cellulose deposition.

Plant Physiol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.

Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive.

View Article and Find Full Text PDF

Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton.

Plant Physiol Biochem

December 2024

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China. Electronic address:

Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive.

View Article and Find Full Text PDF

Neuroinflammation plays an important role in the pathological cascade of Alzheimer's disease (AD) along with aggregation of extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein. In animal models of amyloidosis, local immune activation is centered around Aβ plaques, which are usually of uniform morphology, dependent on the transgenic model used. In postmortem human brains a diversity of Aβ plaque morphologies is seen including diffuse plaques (non-neuritic plaques, non-NP), dense-core plaques, cotton-wool plaques, and NP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!