AI Article Synopsis

  • * Researchers used data from the TCGA database to create a prognostic risk model based on three glutamine metabolism-related genes, identifying two distinct patient subtypes with different clinical characteristics.
  • * Results indicated that patients in the high-risk group had worse outcomes due to higher levels of immune checkpoint expression and poor response to chemotherapy, suggesting that glutamine metabolism can be a valuable tool for predicting patient prognosis and tailoring treatment strategies.

Article Abstract

Background: Reprogramming of glutamine metabolism in Gastric Cancer (GC) can significantly affect the tumor immune microenvironment and immunotherapy. This study examines the role of glutamine metabolism in the microenvironment and prognosis of gastric cancer.

Methods: We obtained gene expression data and clinical information of patients from the TCGA database. The patients were divided into two metabolic subtypes based on consistent clustering. A prognostic risk model containing three glutamine metabolism-related genes (GMRGs) was developed using Lasso-Cox. It was validated by the GEO validation cohort. Additionally, the immune microenvironment composition of the highand low-risk groups was assessed using ESTIMATE, CIBERSORT, and ssGSEA. Drug sensitivity analysis was conducted using the "oncoPredict" R package.

Results: We outlined the distinct clinical characteristics of two subtypes and developed a prognostic risk model. The high-risk group has a poorer prognosis due to an increased expression of immune checkpoints and immunosuppressive cellular infiltration. Our analysis, which included Cox risk regression, ROC curves, and nomogram, demonstrated that this risk model is an independent prognostic factor. The TIDE score was higher in the high-risk group than in the low-risk group. Additionally, the high-risk group did not respond well to chemotherapeutic drug treatment.

Conclusion: This study shows that modelling glutamine metabolism is a good predictor of prognosis and immunotherapy efficacy in gastric cancer. Thus, we can better understand the role of glutamine metabolism in the development of cancer and use these insights to develop more targeted and effective treatments.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0109298673297812240811182813DOI Listing

Publication Analysis

Top Keywords

glutamine metabolism
16
gastric cancer
12
risk model
12
high-risk group
12
prognosis immunotherapy
8
glutamine metabolism-related
8
metabolism-related genes
8
immune microenvironment
8
role glutamine
8
prognostic risk
8

Similar Publications

Purpose: To implement a low-rank and subspace model-based reconstruction for 3D deuterium metabolic imaging (DMI) and compare its performance against Fourier transform-based (FFT) reconstruction in terms of spectral fitting reliability.

Methods: Both reconstruction methods were applied on simulated and experimental DMI data. Numerical simulations were performed to evaluate the effect of increasing acceleration factors.

View Article and Find Full Text PDF

Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months.

View Article and Find Full Text PDF

GLS1-mediated glutamine metabolism mitigates oxidative stress-induced matrix degradation, ferroptosis, and senescence in nucleus pulposus cells by modulating Fe homeostasis.

Free Radic Biol Med

December 2024

Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, China. Electronic address:

Intervertebral disc degeneration (IDD) is intricately linked to the pathogenesis of low back pain (LBP). The balance of nucleus pulposus (NP) cell and intervertebral disc (IVD) integrity is significantly supported by amino acid metabolism within an avascular milieu. However, the specific metabolic demands during the progression of IDD are not fully understood.

View Article and Find Full Text PDF

Metagenomics and metabolomics to investigate the effect of Amygdalus mongolica oil on intestinal microbiota and serum metabolites in rats.

Phytomedicine

December 2024

Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China; Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China. Electronic address:

Background: Renal fibrosis (RF) is an inevitable consequence of multiple manifestations of progressive chronic kidney diseases (CKDs). Mechanism of Amygdalus mongolica (Maxim.) in the treatment of RF needs further investigation.

View Article and Find Full Text PDF

We have shown that virus-specific CD4 and CD8 memory T cells (TM) induce autophagy after T cell receptor (TCR) engagement to provide free glutamine and fatty acids, including in people living with HIV-1 (PLWH). These nutrients fuel mitochondrial ATP generation through glutaminolysis and fatty acid oxidation (FAO) pathways, to fulfill the bioenergetic demands for optimal IL-21 and cytotoxic molecule production in CD4 and CD8 cells, respectively. Here, we expand our knowledge on how the metabolic events that occur in the mitochondria of virus-specific TM down-stream of the autophagy are regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!