AI Article Synopsis

  • * By employing feedback mechanisms during laser interactions, they can control the sizes and positions of the created structures, leading to self-organized micro/nano-pore arrays with tunable features.
  • * The study also examines the physical mechanisms behind this process, showing significant reductions in infrared reflectivity, which could have valuable applications across multiple fields.

Article Abstract

The ultrafast-laser-matter interactions enable "top-down" laser surface structuring, especially for materials difficult to process, with "bottom-up" self-organizing features. The subwavelength scenarios of laser-induced structuring are improved in defects and long-range order by applying positive/negative feedbacks. It is still hardly reported for supra-wavelength laser structuring more associated with complicated thermo/hydro-dynamics. For the first time to the knowledge, the near-field-regulated ultrafast-laser lithography of self-arrayed supra-wavelength micro/nano-pores directly on ultra-hard metallic glass is developed here. The plasmonic hot spots on pre-structures, as the positive feedback, clamped the lateral geometries (i.e., position, size). Simultaneously, it drilled and self-organized into micro/nano-pore arrays by photo-dynamic plasma ablation and Marangoni removal confined under specific femtosecond-laser irradiation, as the negative feedback. The mechanisms and finite element modeling of the multi-physical transduction (based on the two-temperature model), the far-field/near-field coupling, and the polarization dependence during laser-matter interactions are studied. Large-area micro/nano-pore arrays (centimeter scale or larger)  are manufactured with tunable periods (1-5 µm) and geometries (e.g., diameters of 500 nm-6 µm using 343, 515, and 1030 lasers, respectively). Consequently, the mid/far-infrared reflectivity at 2.5-6.5 µm iss decreased from ≈80% to ≈5%. The universality of multi-physical coupling and near-field enhancements makes this approach widely applicable, or even irreplaceable, in various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202405766DOI Listing

Publication Analysis

Top Keywords

micro/nano-pore arrays
8
near-field-regulated ultrafast
4
ultrafast laser
4
laser supra-wavelength
4
structuring
4
supra-wavelength structuring
4
structuring directly
4
directly ultrahard
4
ultrahard metallic
4
metallic glasses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!